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Synthèse 

 

Le projet VACSIM (Validation de la commande des systèmes critiques par couplage simulation et 
méthodes d’analyse formelle), référencé ANR-11-INSE-004, étudie les avantages respectifs des 
techniques de simulation, en incluant des modèles des processus commandés, et des méthodes 
d’analyse formelles, pour la validation de la commande des systèmes critiques. Ce projet est structuré 
en 6 tâches.  

La tâche 5, « Validation formelle de propriétés quantitatives : Approche par contraintes », a pour 
objectif de contribuer à l’avancée des techniques de validation par résolution de systèmes de 
contraintes. Elle est découpée en deux sous-tâches qui abordent des aspects complémentaires de la  
la validation des systèmes critiques : la vérification de propriétés quantitatives pour la sous-tâche T5.1 
et la localisation d’erreur pour la sous-tâche T5.2. 

Ce livrable L5.2 du projet VACSIM est issu des travaux de la sous-tâche T5.1 : « Génération et 
résolution des systèmes de contraintes ». Ce livrable décrit la méthode rAiCp pour la vérification de 
propriétés quantitatives par résolution de systèmes de contraintes sur les flottants. Il comprend la 
réalisation d’un prototype logiciel implémentant cette méthode et l’évaluation du prototype sur des 
exemples académiques et sur une étude de cas fournie par Dassault Systèmes, un partenaire du 
projet VACSIM. Ce livrable décrit aussi l'algorithme FPLP pour le filtrage des contraintes sur les 
flottants qui exploite des relaxations sur les nombres réels. 

 

Les travaux effectués pour ce livrable visent à lever deux verrous scientifiques identifiés dans le projet 
VACSIM. Le premier verrou concerne la résolution de systèmes de contraintes non-linéaires sur les 
flottants. Pour traiter ce problème, nous nous sommes appuyés et avons amélioré un solveur de 
contraintes sur les flottants développé dans l’équipe (FPCS) : nouveaux algorithmes de filtrage, 
nouvelles stratégies de recherche, portage sur architecture 64 bits. Nous avons aussi mis au point de 
nouvelles techniques de résolution des contraintes sur les flottants qui se basent sur une 
approximation sur les réels des opérations en virgule flottante (FPLP). Le second verrou concerne le 
passage à l’échelle de la méthode de vérification de propriétés quantitatives pour des systèmes 
embarqués temps-réel. Pour répondre à cette problématique, nous avons conçu une approche 
hybride d’analyse des valeurs des variables des programmes qui couple techniques d’interprétation 
abstraite et techniques de programmation par contraintes (rAiCp). Le passage à l’échelle est aussi 
amélioré par une stratégie d’exploration du graphe de flot de contrôle des programmes qui fusionne 
les valeurs des variables à certains nœuds de jonction du graphe pour limiter l'explosion du nombre 
de chemins d’exécution des programmes à explorer. 

Le livrable se présente sous la forme de trois articles joints en annexe de ce document et des liens 
vers les pages Web des outils développés suivants : 

 rAiCp, le prototype logiciel implémentant la méthode de vérification de propriétés quantitatives 
par résolution de systèmes de contraintes sur les flottants (https://sourcesup.renater.fr/cpbpv). 
 

 FPCS, le solveur de contraintes sur les flottants utilisé dans rAiCp 
(http://www.i3s.unice.fr/~cpjm/misc/fpcs.html). 

 

Ce livrable L5.2 a été rédigé par l’I3S. 

  

https://sourcesup.renater.fr/cpbpv
http://www.i3s.unice.fr/~cpjm/misc/fpcs.html
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Annexes 

 

Les annexes sont constituées de trois articles : 

 Le premier article, en Annexe A p. 4, décrit la méthode de vérification de propriétés 
quantitatives par résolution de systèmes de contraintes sur les flottants rAiCp. Il s'agit d'un 
article publié dans les actes de la 18ème conférence internationale « Principles and Practice 
of Constraint Programming » [1]. 

 Le second article, en Annexe B p. 20, donne une présentation plus détaillée de la méthode 
rAiCp ainsi que du prototype l'implantant. L'article décrit aussi l'application du prototype à un 
cas d'étude industriel. Il s'agit d’un article soumis pour publication et déposé sur HAL 
(http://hal.archives-ouvertes.fr/hal-00860681). 

 Le troisième article, en Annexe C p. 45, décrit l'algorithme de filtrage des contraintes sur les 
flottants FPLP. Il s'agit d'un article publié dans les actes de la 18ème conférence 
internationale « Principles and Practice of Constraint Programming » [2]. 
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Annexe A 

 

 Titre : 

Refining abstract interpretation based value analysis with constraint programming techniques 
 
Auteurs : 

Olivier Ponsini, Claude Michel et Michel Rueher 

 

Résumé : 

L’analyse des valeurs des variables par interprétation abstraite est une approche classique du 
problème de la vérification des programmes comportant des calculs en virgule flottante. 
Cependant, les outils de l'état de l'art calculent une sur-approximation des valeurs des 
variables qui peut être très grossière. Dans cet article, nous montrons que les solveurs de 
contraintes peuvent affiner significativement les approximations calculées par les outils basés 
sur l'interprétation abstraite. Nous introduisons une approche hybride qui combine techniques 
d'interprétation abstraite et de programmation par contraintes en une unique analyse statique 
et automatique. Le système que nous avons développé, rAiCp, est substantiellement plus 
précis que Fluctuat, un analyseur statique de l'état de l'art. Ainsi, rAiCp a pu éliminer les treize 
fausses alarmes générées par Fluctuat sur un jeu de tests standard.



Refining abstract interpretation based value
analysis with constraint programming

techniques?

Olivier Ponsini, Claude Michel, and Michel Rueher
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Abstract. Abstract interpretation based value analysis is a classical
approach for verifying programs with floating-point computations. How-
ever, state-of-the-art tools compute an over-approximation of the vari-
able values that can be very coarse. In this paper, we show that con-
straint solvers can significantly refine the approximations computed with
abstract interpretation tools. We introduce a hybrid approach that com-
bines abstract interpretation and constraint programming techniques in
a single static and automatic analysis. rAiCp, the system we developed is
substantially more precise than Fluctuat, a state-of-the-art static anal-
yser. Moreover, it could eliminate 13 false alarms generated by Fluctuat
on a standard set of benchmarks.

Key words: Program verification, Floating-point computation, Con-
straint solvers over floating-point numbers, Constraint solvers over real
number intervals, Abstract interpretation-based approximation

1 Introduction

Programs with floating-point computations control complex and critical physical
systems in various domains such as transportation, nuclear energy, or medicine.
Floating-point computations are an additional source of errors and famous com-
puter bugs are due to errors in floating-point computations, e.g., the Patriot
missile failure. Floating-point computations are usually derived from mathemat-
ical models on real numbers [14]. However, real and floating-point computation
models are different: for the same sequence of operations, floating-point numbers
do not behave identically to real numbers. For instance, with binary floating-
point numbers, some decimal real numbers are not representable (e.g., 0.1 has
no exact representation), arithmetic operators are not associative and may be
subject to phenomena such as absorption (e.g., a+ b is rounded to a when a is
far greater than b) or cancellation (subtraction of nearly equal operands after
rounding that only keeps the rounding error).

? This work was partially supported by ANR VACSIM (ANR-11-INSE-0004), ANR
AEOLUS (ANR-10-SEGI-0013), and OSEO ISI PAJERO projects.

rueher
Typewritten Text
Accepted for publication at CP'12 (18th International Conference onPrinciples and Practice of Constraint Programming)



Value analysis is often used to check the absence of run-time errors, such as
invalid integer or floating-point operations, as well as simple user assertions [8].
Value analysis can also help with estimating the accuracy of floating-point com-
putations with respect to the same sequence of operations in an idealized se-
mantics of real numbers. Existing automatic tools are mainly based on abstract
interpretation techniques. For instance, Fluctuat [9], a state-of-the-art static
analyzer, computes an over-approximation of the domains of the variables for a
C program considered with a semantics on real numbers. It also computes an
over-approximation of the error due to floating-point operations at each pro-
gram point. However, these over-approximations may be very coarse even for
usual programming constructs and expressions. As a consequence, numerous
false alarms1—also called false positives—may be generated.

In this paper, we introduce a hybrid approach for the value analysis of
floating-point programs that combines abstract interpretation (AI) and con-
straint programming techniques (CP). We show that constraint solvers over
floating-point and real numbers can significantly refine the over-approximations
computed by abstract interpretation. rAiCp, the system we developed, uses
both Fluctuat and the following constraint solvers:

– RealPaver [17], a safe and correct solver for constraints over real numbers,
– FPCS [21, 20], a safe and correct solver for constraints over floating-point

numbers.

Experiments show that rAiCp is substantially more precise than Fluctuat,
especially on C programs that are difficult to handle with abstract interpreta-
tion techniques. This is mainly due to the refutation capabilities of filtering al-
gorithms over the real numbers and the floating-point numbers used in rAiCp.
rAiCp could also eliminate 13 false alarms generated by Fluctuat on a set
of 57 standard benchmarks proposed by D’Silva et al [12] to evaluate CDFL,
a program analysis tool that embeds an abstract domain in the conflict driven
clause learning algorithm of a SAT solver. Moreover, rAiCp is on average at
least 5 times faster than CDFL on this set of benchmarks.

Section 2 illustrates our approach on a small example. Basics on the tech-
niques and tools we use are introduced in Section 3. Next section is devoted to
related work. Section 5 details our approach whereas experiments are analysed
in Section 6.

2 Motivation

In this section, we illustrate our approach on a small example. The program in
Fig. 1 is mentioned in [13] as a difficult program for abstract interpretation based

1 A false alarm corresponds to the case when the abstract semantics intersects the
forbidden zone, i.e., erroneous program states, while the concrete semantics does
not intersect this forbidden zone. So, a potential error is signaled which can never
occur in reality (see http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html).



Fig. 1. Example 1.

1 /∗ Pre−condition : x ∈ [0, 10] ∗/
2 double conditional(double x) {

3 double y = x*x - x;

4 if (y >= 0)

5 y = x/10;

6 else

7 y = x*x + 2;

8 return y; }

analyses. On floating-point numbers, as well as on real numbers, this function
returns a value in the interval [0, 3]. Indeed, from the conditional statement of
line 4, we can derive the following information:

– if branch: x = 0 or x ≥ 1, and thus y ∈ [0, 1] at the end of this branch;
– else branch: x ∈]0, 1[, and thus y ∈]2, 3[ at the end of this branch.

However, classical abstract domains (e.g., intervals, polyhedra), as well as the
abstract domain of zonotopes used in Fluctuat, fail to obtain a good approxi-
mation of this value. The best interval obtained with these abstractions is [0, 102],
both over the real numbers and the floating-point numbers. The difficulty for
these analyses is to intersect the abstract domains computed for y at lines 3
and 4. Actually, they are unable to derive from these statements any constraint
on x. As a consequence, in the else branch, they still estimate that x ranges
over [0, 10].

We propose here to compute an approximation of the domains in both ex-
ecution paths. On this example, CSP filtering techniques are strong enough to
reduce the domains of the variables. Consider for instance the constraint system
over the real numbers {y0 = x0 ∗ x0 − x0, y0 < 0, y1 = x0 ∗ x0 + 2, x0 ∈ [0, 10]}
which corresponds to the execution path2 through the else branch of the func-
tion conditional. From the constraints y0 = x0 ∗x0−x0 and y0 < 0, the interval
solver over the real numbers we use can reduce the initial domain of x0 to [0, 1].
This reduced domain is then used to compute the one of y1 via the constraint
y1 = x0 ∗ x0 + 2, which yields y1 ∈ [2, 3.001]. Likewise, our constraint solver
over the floating-point numbers will reduce x0 to [4.94 × 10−324, 1.026] and y1
to [2, 3.027].

To sum up, we explore the control flow graph (CFG) of a program and stop
each time two branches join. There, we build one constraint system per branch
that reaches the join point. Then, we use filtering techniques on these systems to
reduce the domains of the variables computed by Fluctuat at this join point.
Exploration goes on with the reduced domains. CFG exploration is performed
on-the-fly. Branches are cut as soon as an inconsistency of the constraint system

2 Statements are converted into DSA (Dynamic Single Assignment) form where each
variable is assigned exactly once on each program path [2].



Table 1. Return domain of the conditional function.

Domain Time

Exact real and floating-point domains [0, 3] –

Fluctuat (real and floating-point domains) [0, 102] 0.1 s

FPCS (floating-point domain) [0, 3.027] 0.2 s

RealPaver (real domain) [0, 3.001] 0.3 s

is detected by a local filtering algorithm. Table 1 collects the results obtained
by the different techniques on the example of the function conditional. On this
example, contrary to Fluctuat, our approach computes very good approxima-
tions. Analysis times are very similar. In [13], the authors proposed an extension
to the zonotopes—named constrained zonotopes—which attempts to overcome
the issue of program conditional statements. This extension is defined for the
real numbers and is not yet implemented in Fluctuat. The approximation
computed with constrained zonotopes is better than the one of Fluctuat (the
upper bound is reduced to 9.72) but remains less precise than the one computed
with RealPaver.

3 Background

Before going into the details, we recall basics on abstract interpretation and
Fluctuat, as well as on the constraint solvers RealPaver and FPCS used in
our implementation.

Abstract interpretation3 consists in considering an abstract semantics, that
is a super-set of the concrete program semantics. The abstract semantics covers
all possible cases, thus, if the abstract semantics is safe (i.e. does not intersect
the forbidden zone) then so is the concrete semantics.

Fluctuat is a static analyzer for C programs specialized in estimating the
precision of floating-point computations4 [9]. Fluctuat compares the behavior
of the analyzed program over real numbers and over floating-point numbers. In
other words, it allows to specify ranges of values for the program input variables
and computes for each program variable v:

– bounds for the domain of variable v considered as a real number;
– bounds for the domain of variable v considered as a floating-point number;
– bounds for the maximum error between real and floating-point values;
– the contribution of each statement to the error associated with variable v ;

3 See http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html for a nice informal in-
troduction.

4 Fluctuat is developed by CEA-List (http://www-list.cea.fr/validation_en.
html) and was successfully used for industrial applications of several tens of thou-
sands of lines of code in transportation, nuclear energy, or avionics areas.



– the contribution of the input variables to the error associated with variable
v.

Fluctuat proceeds by abstract interpretation. It uses the weakly relational
abstract domain of zonotopes [15]. Zonotopes are sets of affine forms that pre-
serve linear correlations between variables. They offer a good trade-off between
performance and precision for floating-point and real number computations. In-
deed, the analysis is fast and scales well, processes accurately linear expressions,
and keeps track of the statements involved in the loss of accuracy of floating-
point computations. To increase the analysis precision, Fluctuat allows to
use arbitrary precision numbers or to subdivide up to two input variable inter-
vals. However, over-approximations computed by Fluctuat may be very large
because the abstract domains do not handle well conditional statements and
non-linear expressions.

RealPaver is an interval solver for numerical constraint systems over the real
numbers5 [17]. Constraints can be non-linear and can contain the usual arith-
metic operations and transcendental elementary functions.

RealPaver computes reliable approximations of continuous solution sets
using correctly rounded interval methods and constraint satisfaction techniques.
More precisely, the computed domains are closed intervals bounded by floating-
point numbers. RealPaver implements several partial consistencies: box, hull,
and 3B consistencies. An approximation of a solution is described by a box,
i.e., the Cartesian product of the domains of the variables. RealPaver either
proves the unsatisfiability of the constraint system or computes small boxes that
contains all the solutions of the system.

The RealPaver modeling language does not provide strict inequality and
not-equal operators, which can be found in conditional expressions in programs.
As a consequence, in the constraint systems generated for RealPaver, strict
inequalities are replaced by non strict ones and constraints with a not-equal
operator are ignored. This may lead to over-approximations, but this is safe
since no solution is lost.

FPCS is a constraint solver designed to solve a set of constraints over floating-
point numbers without losing any solution [21, 20]. It uses 2B-consistency [19]
along with projection functions adapted to floating-point arithmetic [22, 4].

The main difficulty lies in computing inverse projection functions that keep
all the solutions. Indeed, direct projections only requires a slight adaptation of
classical results on interval arithmetic, but inverse projections do not follow the
same rules because of the properties of floating-point arithmetic. More precisely,
each constraint is decomposed into an equivalent binary or ternary constraint by
introducing new variables if necessary. A ternary constraint x = y �f z, where
�f is an arithmetic operator over the floating-point numbers, is decomposed
into three projection functions:

5 RealPaver web site: http://pagesperso.lina.univ-nantes.fr/info/perso/

permanents/granvil/realpaver/



– the direct projection, Πx(x = y �f z);
– the first inverse projection, Πy(x = y �f z);
– the second inverse projection, Πz(x = y �f z).

A binary constraint of the form x �f y, where �f is a relational operator
(among ==, !=, <, <=, >, and >=), is decomposed into two projection functions:
Πx(x �f y) and Πy(x �f y). The computation of the approximation of these
projection functions is mainly inspired from interval arithmetic and benefits
from floating-point numbers being a totally ordered finite set.

FPCS also implements stronger consistencies—e.g., kB-consistencies [19]—
to deal with the classical issues of multiple occurrences and to reduce more
substantially the bounds of the domains of the variables.

The floating-point domains handled by FPCS also include infinities. More-
over, FPCS handles all the basic arithmetic operations, as well as most of the
usual mathematical functions. Type conversions are also correctly processed.

4 Related work

Different methods address static validation of programs with floating-point com-
putations: abstract interpretation based analyses, proofs of programs with proof
assistants or with decision procedures in automatic solvers.

Analyses based on abstract interpretation capture rounding errors due to
floating-point computation in their abstract domains. They are usually fast, au-
tomatic, and scalable. However, they may lack of precision and they are not
tailored for automatically generating a counter-example, that is to say, input
variable values that violate some assertion in a program. Astrée [8] is proba-
bly one of the most famous tool in this family of methods. The tool estimates
the value of the program variables at every program point and can show the
absence of run-time errors, that is the absence of behavior not defined by the
programming language, e.g., division by zero, arithmetic overflow. As said be-
fore, Fluctuat estimates in addition the accuracy of the floating-point compu-
tations, that is, a bound on the difference between the values taken by variables
when the program is given a real semantics and when it is given a floating-point
semantics [9].

Proof assistants like Coq [3] or HOL [18] allow their users to formalize
floating-point arithmetic. Proofs of program properties are done manually in
the proof assistants which guarantee proof correctness. Even though some parts
of the proofs may be automatized, these tools usually require a lot of user inter-
action. Moreover, when a proof strategy fails to prove a property, the user often
does not know whether the property is false or another strategy could prove
it. Like abstract interpretation, proof assistants usually do not provide auto-
matic generation of counter-examples for false properties. The Gappa tool [11]
combines interval arithmetic and term rewriting from a base of theorems. The
theorems rewrite arithmetic expressions so as to compensate for the shortcom-
ings of interval arithmetic, e.g., loss of dependency between variables. Whenever



the computed intervals are not precise enough, theorems can be manually intro-
duced or the input domains can be subdivided. The cost of this semi-automatic
method is then considerable. In [1], the authors propose axiomatizing floating-
point arithmetic within first-order logic to automate the proofs conducted in
proof assistants such as Coq by calling external SMT (Satisfiability Modulo
Theories) solvers and Gappa. Their experiments show that human interaction
with the proof assistant is still required.

The classical bit-vector approach of SAT solvers is ineffective on programs
with floating-point computations because of the size of the domains of floating-
point variables and the cost of bit-vector operations. An abstraction technique
was devised for CBMC in [5]. It is based on under and over-approximation of
floating-point numbers with respect to a given precision expressed as a number
of bits of the mantissa. However, this technique remains slow. D’Silva et al [12]
developed recently CDFL, a program analysis tool that embeds an abstract
domain in a conflict driven clause learning algorithm of a SAT solver. CDFL is
based on a sound and complete analysis for determining the range of floating-
point variables in control software. In [12] the authors state that CDFL is more
than 200 times faster than CBMC. In Section 6 we compare the performances
of CDFL and rAiCp on a set of benchmarks proposed by D’Silva et al.

Links between abstract interpretation and constraint logic programming have
been studied at a theoretical level (e.g., [6]) and recent work investigate the use
of abstract interpretation and abstract domains in the context of constraint
programming. In [10], the authors introduce a new global constraint to model
iterative arithmetic relations between integer variables. The associated filtering
algorithm is based on abstract interpretation over polyhedra. In [23], the authors
propose to use the octagonal abstract domain, which proved efficient in abstract
interpretation, to represent the variable domains in a continuous constraint sat-
isfaction problem. Then, they generalize local consistency and domain splitting
to this octagonal representation. In this paper, we show how abstract interpre-
tation and constraint programming techniques can complement each other for
the static analysis of floating-point programs.

5 rAiCp, a hybrid approach

The approach we propose here is based on successive explorations and merging
steps. More precisely, we call Fluctuat to compute a first approximation of the
variable values at the first program node of the CFG where two branches join.
Then, we build one constraint system per branch and use filtering techniques to
reduce the domains of the variables computed by Fluctuat. Reduced domains
obtained for each branch are merged and exploration goes on with the result of
the merge.

5.1 Control flow graph exploration

The CFG of a program is explored using a forward analysis going from the be-
ginning to the end of the program. Statements are converted into DSA (Dynamic



Single Assignment) form where each variable is assigned exactly once on each
program path [2]. Lengths of the paths are bounded since loops are unfolded
a bounded number of times, after which they are abstracted by the domains
computed by abstract interpretation. At any point of an execution path, the
possible states of a program are represented by a constraint system over the
program variables. Domains of the variables are intervals over the real numbers
in the constraint store of RealPaver; domains are intervals over the floating-
point numbers that correspond to the int, float and double machine types of
the C language6 in the constraint store of FPCS. Each program statement adds
new constraints and variables to these constraint stores. This technique for repre-
senting programs by constraint systems was introduced for bounded verification
of programs in CPBPV [7]. The implementation of the approach proposed in
this paper relies on libraries developed for CPBPV.

CFG exploration is performed on-the-fly and unreachable branches are inter-
rupted as soon as an inconsistency is detected in the constraint store. We collect
constraints between two join points in the CFG. If, for all executable paths be-
tween these points, the constraint systems are inconsistent for some interval I
of an output variable x, then we can remove the interval I from the domain of
x. Note that we differentiate between program input variables, whose domains
cannot be reduced, and program output variables, whose domains depend on the
program computations and input variable domains, and thus can be reduced.

Merging program states at each join point not only allows a tight cooperation
between Fluctuat and the constraint solvers but also limits the number of
executable paths to explore.

5.2 Filtering techniques

We use constraint filtering techniques for two different purposes in rAiCp:

– elimination of unreachable branches during CFG exploration;
– reduction of the domain of the variables at CFG join points.

On floating-point numbers constraint systems, we perform 3B(w)-consistency
filtering with FPCS; on real numbers constraint systems, we perform a BC5-
consistency filtering in paving mode with RealPaver7.

6 Experiments

In this section, we compare in detail Fluctuat and rAiCp on programs that
are representative of Fluctuat limitations. We also compare rAiCp to a state-

6 Note that the behavior of programs containing floating-point computations may
vary with the programming language or the compiler, but also, with the operating
system or the hardware architecture. We consider here C programs, compiled with
GCC without any optimization option and intended to be run on an x86 architecture
managed by a 32-bit Linux operating system.

7 BC5-consistency is a combination of interval Newton method, hull-consistency and
box-consistency.



Table 2. Domains of the roots of the quadratic function.

conf. #1: a ∈ [−1, 1]
conf. #2: a, b, c ∈ [1, 1× 106]

b ∈ [0.5, 1] c ∈ [0, 2]
x0 x1 Time x0 x1 Time

R Fluctuat [−∞,∞] [−∞,∞] 0.14 s [−2× 106, 0] [−1× 106, 0] 0.14 s
rAiCp [−∞, 0] [−8.006,∞] 1.55 s [−1× 106, 0] [−5.186× 105, 0] 0.58 s

F Fluctuat [−∞,∞] [−∞,∞] 0.13 s [−2× 106, 0] [−1× 106, 0] 0.13 s
rAiCp [−∞, 0] [−8.125,∞] 0.39 s [−1× 106, 0] [−3 906.26, 0] 0.39 s

of-the-art tool, CDFL on the benchmarks provided by the authors of the latter
system.

All results were obtained on an Intel Core 2 Duo at 2.8 GHz with 4 GB of
memory running Linux using Fluctuat version 3.8.73, RealPaver version 0.4
and the downloadable version of CDFL. All the programs are available at http:
//users.polytech.unice.fr/~rueher/Benchs/RAICP.

6.1 Improvements over Fluctuat

We show here how our approach improves the approximations computed by
Fluctuat on programs with conditionals, non-linearities, and loops.

Conditionals: The first benchmark concerns conditional statements, for which
abstract domains need to be intersected with the condition of the conditional
statement. The function gsl poly solve quadratic comes from the GNU sci-
entific library and contains many of these conditional statements. It computes
the real roots of a quadratic equation ax2+bx+c and puts the results in variables
x0 and x1.

Table 2 shows analysis times and approximations of the domains of variables
x0 and x1 for two configurations of the input variables. The first two rows present
the results of Fluctuat and rAiCp (with RealPaver) over the real numbers.
The next two rows present the results of Fluctuat and rAiCp (with FPCS)
over the floating-point numbers.

In the first configuration, Fluctuat’s over-approximation is so large that
it does not give any information on the domain of the roots, whereas rAiCp
drastically reduce these domains both over R and F. However, intersection of
abstract domains has not always such a significant impact on the bounds of all
domains as illustrated by the domain over F of x0 in the second configuration.

To increase analysis precision, Fluctuat allows to divide the domains of at
most two input variables into a given number of sub-domains. Analyses are then
run over each combination of sub-domains and the results are merged. Finding
appropriate subdivisions of the domains is a critical issue: subdividing may not
improve the analysis precision, but it always increases the analysis time. Table 3
reports the results with 50 subdivisions when only one domain is divided, and 30
when two domains are divided. Over R, in the first configuration, the subdivisions



Table 3. Domains over F for the quadratic function with input domains subdivided.

conf. #1 conf. #2
x0 Time x1 Time

Fluctuat
[−∞, -0] > 1 s [−1× 106, 0] > 1 s

a subdivided

Fluctuat
[−∞,∞] > 1 s [−5× 105, 0] > 1 s

b subdivided

Fluctuat
[−∞,∞] > 1 s [−1× 106, 0] > 1 s

c subdivided

Fluctuat a
[−∞, -0] > 10 s [−1.834× 105, 0] > 10 s

& b subdivided

Fluctuat a
[−∞, -0] > 10 s [−1× 106, 0] > 10 s

& c subdivided

Fluctuat b
[−∞,∞] > 10 s [−5× 105, 0] > 10 s

& c subdivided

Table 4. Domains of the return value of sinus and rump functions.

sinus

x ∈ [−1, 1]

rump

x ∈ [7× 104, 8× 104]
y ∈ [3× 104, 4× 104]

Domain Time Domain Time

R Fluctuat [−1.009, 1.009] 0.12 s [−1.168× 1037, 1.992× 1037] 0.13 s
rAiCp [−0.842, 0.843] 0.34 s [−1.144× 1036, 1.606× 1037] 1.26 s

F Fluctuat [−1.009, 1.009] 0.12 s [−1.168× 1037, 1.992× 1037] 0.13 s
rAiCp [−0.853, 0.852] 0.22 s [−1.168× 1037, 1.992× 1037] 0.22 s

yield no improvement and, in the second configuration, the results are identical
to those over F.

Subdividing domains can be quite time consuming with little gains in preci-
sion:

– In the first configuration, subdivisions of the domain of a lead to a significant
reduction of the domain of x0. No subdivision combination could reduce the
domain of x1.

– In the second configuration, the best reduction of the domain of x1 is ob-
tained by subdividing the domains of both a and b. The gain remains however
quite small and no subdivision combination could reduce the domain of x0.

rAiCp turns out to be more efficient: it often improves the precision of the
approximation and requires less time than the subdividing process of Fluctuat.
Moreover, rAiCp could also take advantage of the subdivision technique.

Non-linearity: The abstract domain used by Fluctuat is based on affine
forms that do not allow an exact representation of non-linear operations: the
image of a zonotope by a non-linear function is not a zonotope in general. Non-



Table 5. Domain of the return value of the sqrt and bigLoop functions.

sqrt #1: x ∈ [4.5, 5.5] sqrt #2: x ∈ [5, 10] bigLoop
Domain Time Domain Time Domain Time

R Fluctuat [2.116, 2.354] 0.13 s [2.098, 3.435] 0.2 s [−∞,∞] 0.15 s
rAiCp [2.121, 2.346] 0.35 s [2.232, 3.165] 0.57 s [0, 10] 0.8 s

F Fluctuat [2.116, 2.354] 0.13 s [−∞,∞] 0.2 s [−∞,∞] 0.15 s
rAiCp [2.121, 2.347] 0.81 s [2.232, 3.168] 1.59 s [0, 10] 0.7 s

linear operations are thus over-approximated. FPCS handles the non-linear ex-
pressions better. This is illustrated on the 7th-order Taylor series of function
sinus (see Table 4, column sinus).

FPCS and RealPaver also use approximations to handle non-linear terms,
and thus, are not always more precise than Fluctuat.The second row of Table 4
shows that rAiCp could not reduce the domain computed by Fluctuat for the
rump polynomial program [24], a very particular polynomial designed to outline
a catastrophic cancellation phenomenon.

Loops: Fluctuat unfolds loops a bounded number of times8 before applying
the widening operator of abstract interpretation. The widening operator allows
to find a fixed point for a loop without unfolding it completely. In rAiCp,
we also unfold loops a user-defined number of times, after which the loop is
abstracted by the invariant computed by abstract interpretation. Note that we
can also use Fluctuat to estimate an upper bound on the number of necessary
unfoldings [16].

sqrt is a program based on the so-called Babylonian method that computes
an approximate value, with an error of 1× 10−2, of the square root of a number
greater than 4. For the analysis of this program with two different input domains
(see Table 5), ten unfoldings are sufficient to exit the loop. Both Fluctuat
and rAiCp obtain accurate results over R. Over F, in the second configuration
rAiCp shrinks the domain to [2.232, 3.168] whereas Fluctuat couldn’t achieve
any reduction.

Program bigLoop contains non-linear expressions followed by a loop that it-
erates one million times. On such programs, it is not possible to completely
unfold loops. Fluctuat fails to analyze accurately the loop in this program
because of over-approximations of the non-linear expressions. rAiCp refines sig-
nificantly the over-approximations computed by Fluctuat, even without any
initial unfoldings. This example shows that a tight cooperation between CP and
AI techniques can be very efficient.

Contributions of AI and CP Fluctuat often yields a first approximation
that is tight enough to allow efficient filtering with partial consistencies. Even
though the same domain reductions can sometimes be achieved without starting

8 Default value is ten times.



from the approximation computed by Fluctuat (i.e., starting from [−∞,∞]),
our experiments show that our approach usually benefits from the approximation
computed by Fluctuat.

3B-consistency filtering works well with FPCS. 2B-consistency is not strong
enough to reduce the domains computed by Fluctuat whereas a stronger kB-
consistency is too time-consuming. We experimented also with various consis-
tencies implemented in RealPaver: BC5, a combination of hull and box con-
sistencies with interval Newton method, HC4, 3B-consistency. 3B-consistency
was in general too time-consuming. BC5-consistency provided the best trade-off
between time cost and domain reduction.

6.2 Comparison with CDFL

CDFL [12] is a program analysis tool designed for proving the absence of run-
time errors in critical programs. In [12], the authors show that CDFL is much
more efficient than CBMC and much more precise than Astrée [8] for deter-
mining the range of floating-point variables on various programs.

We compare here rAiCp and CDFL on the set of benchmarks9 proposed
in [12]. The set consists of 57 benchmarks made from 12 programs by varying the
input variable domains, the loop bounds, and the constants in the properties to
check. We discarded two benchmarks as they are related to integer computations
which are not the focus of this work. All the programs are based on academic
numerical algorithms, except Sac which is generated from a Simulink controller
model. The program properties are simple assertions on program variable do-
mains.

Table 6 provides the runing time of rAiCp, Fluctuat and CDFL. rAiCp
was only run with FPCS since the properties and the programs are both defined
over the floating-point numbers.

All three analyses may report false alarms: i.e., they may answer a property
is false while it is not. Actually, rAiCp and CDFL correctly reported all the
33 true properties. Fluctuat gave 11 false alarms that are noted with * in
Fluctuat columns of Table 6. The domain refinements performed by rAiCp
successfully eliminated the false alarms produced by Fluctuat.

On average, rAiCp is 5 times faster than CDFL for the same precision. On
some benchmarks, we observe a speed-up factor of 25. On average, rAiCp is 2.2
times slower than Fluctuat used alone but this is largely compensated by the
gain in precision.

7 Conclusion

In this paper, we introduced a new approach for computing tight intervals of
floating-point variables of C programs. rAiCp, the prototype we developed, re-
lies on the static analyser Fluctuat and on FPCS and RealPaver, two con-

9 These benchmarks are available at http://www.cprover.org/cdfpl



Table 6. Execution times (s) of CDFL, Fluctuat and rAiCp.

CDFL Fluctuat rAiCp CDFL Fluctuat rAiCp

newton.1.1 0.5 0.12 0.62 eps line1 0.12 0.11 0.28
newton.1.2 1.64 0.13 0.68 muller 0.13 0.11 0.2
newton.1.3 4.6 0.21 1.89 sac.10 2.49 1.25 1.6
newton.2.1 0.95 0.11 1.47 sac.20 2.46 1.38 1.75
newton.2.2 3.44 0.14 0.82 sac.30 2.49 1.39 1.68
newton.2.3 9.32 0.21 1.79 sac.40 2.47 1.38 1.68
newton.3.1 1.95 0.12* 1.3 sac.50 2.46 1.38 1.71
newton.3.2 5.61 0.13 1.13 sac.60 2.48 1.4 1.76
newton.3.3 15.9 0.22 2.35 sac.70 2.46 1.37 1.7
newton.4.1 1.07 0.12 1.74 sac.80 2.48 1.37 1.7
newton.4.2 8.4 0.13 1.82 sac.90 2.47 1.37 1.67
newton.4.3 23.63 0.22 2.49 sine.1 0.68 0.12 0.31
newton.5.1 1.76 0.12 1.83 sine.2 0.96 0.11 0.28
newton.5.2 14.61 0.13* 2.68 sine.3 0.5 0.11 0.28
newton.5.3 38.19 0.23* 4.01 sine.4 7.89 0.12* 0.3
newton.6.1 1.28 0.12 2.15 sine.5 0.68 0.12* 0.23
newton.6.2 2.33 0.13 8.85 sine.6 0.3 0.12* 0.26
newton.6.3 3.59 0.15 4.76 sine.7 0.13 0.12* 0.22
newton.7.1 1.8 0.12 2.23 sine.8 0.08 0.12 0.23
newton.7.2 1.57 0.14 1.59 square.1 0.16 0.12 0.26
newton.7.3 19.45 0.15 1.68 square.2 0.32 0.12 0.25
newton.8.1 0.41 0.11 0.86 square.3 0.7 0.11 0.25
newton.8.2 1.67 0.12 0.88 square.4 1.05 0.12* 0.22
newton.8.3 7.49 0.12 1.05 square.5 0.68 0.12* 0.22
GC4 0.04 0.14 0.23 square.6 0.55 0.11* 0.23
Poly 0.16 0.11 0.23 square.7 0.36 0.12* 0.23
Rump 0.02 0.11 0.21 square.8 0.06 0.12 0.21
Sterbenz 0 0.12 0.2 Total 208.99 18.37 40.55

straint solvers which are respectively correct over floating-point and real num-
bers. So, rAiCp can exploit the refutation capabilities of partial consistencies
to refine the domains computed by Fluctuat.

We showed that rAiCp is fast and efficient on programs that are representa-
tive of the difficulties of Fluctuat (conditional constructs and non-linearities).
Experiments on a significant set of benchmarks showed also that rAiCp is as
precise and faster than CDFL, a state-of-the-art tool for bound analysis and
assertion checking on programs with floating-point computations.

This integration of AI and CP works well because often the first approxi-
mation of variable bounds computed by AI is small enough to allow efficient
filtering with partial consistencies. In the case of Fluctuat, sets of affine forms
abstract non-linear expressions and constraints. These sets constitute better ap-
proximations of linear constraint systems than the boxes used in interval-based
constraint solvers. Nonetheless, they are less adapted for non-linear constraint



systems where filtering techniques used in numeric CSP solving offer a more
flexible and extensible framework.

Further work concerns a tighter integration of abstract interpretation and
constraint solvers, for instance, at the abstract domain level instead of the in-
terval domain level.

Acknowledgments. The authors gratefully acknowledge Sylvie Putot, Éric
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Verifying floating-point programs with constraint
programming and abstract interpretation techniques

Olivier Ponsini · Claude Michel ·
Michel Rueher

Abstract Static value analysis is a classical approach for verifying programs with
floating-point computations. Value analysis mainly relies on abstract interpretation
and over-approximates the possible values of program variables. State-of-the-art tools
may however compute over-approximations that can be rather coarse for some very
usual program expressions. In this paper, we show that constraint solvers can sig-
nificantly refine approximations computed with abstract interpretation tools. More
precisely, we introduce a hybrid approach that combines abstract interpretation and
constraint programming techniques in a single static and automatic analysis. We com-
pared the efficiency of the system we developed—named RAICP—with state-of-the-
art static analyzers: RAICP produces substantially more precise approximations and
is able to check program properties on both academic and industrial benchmarks.

Keywords Program verification · Floating-point computation · Constraint solving
over floating-point numbers ·Constraint solving over real number intervals ·Abstract
interpretation-based approximation

1 Introduction

Programs with floating-point computations control complex and critical systems in
numerous domains, including cars and other transportation systems, nuclear energy
plants, or medical devices. Floating-point computations are derived from mathemat-
ical models on real numbers (Goldberg, 1991), but computations on floating-point
numbers are different from computations on real numbers. For instance, with binary
floating-point numbers, some real numbers are not representable (e.g. 0.1 does not
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2 Olivier Ponsini et al.

have any exact representation). Floating point arithmetic operators are neither asso-
ciative nor distributive, and may be subject to phenomena such as absorption and
cancellation. Furthermore, the behavior of programs containing floating-point com-
putations varies with the programming language, the compiler, the operating system,
or the hardware architecture.

For all these reasons, floating-point computations are an additional source of er-
rors in embedded programs. But there is much more, including the fact that most
programs are written with the semantics of real numbers in mind. That’s why it is
very important to estimate the accuracy of floating-point computations with respect
to the same sequence of operations in an idealized semantics of real numbers. The
goal of this estimation is to identify suspicious values, i.e. values for which the behav-
ior of the program over the floating-point numbers is different from the behavior one
could expect over the real numbers. Identifying such suspicious values is a critical
issue in embedded program verification.

1.1 Value analysis

Static value analysis is a classical approach for verifying programs with floating-point
computations. Value analysis can deal with properties ranging from the absence of
run-time errors to simple user assertions (Cousot et al, 2007). Value analysis consists
in approximating variable domains, i.e. the set of possible values that each variable
can take at a program point. Approximations are mainly worked out with abstract
interpretation techniques. They are used to estimate the accuracy of floating-point
computations with respect to the same sequence of operations in an idealized seman-
tics of real numbers.

Value analysis is also used to check program properties: if none of the values
in variable domains can violate a property, then the property holds. However, value
analysis over-approximates domains and thus, some values in a domain may not ac-
tually be reachable for the corresponding variable. Therefore, value analysis usually
cannot ensure that a property is violated: when some values may violate a property,
the analysis just reports a potential error in the program. If such a potential error is
reported for a property that turns out to be true, it is called a false alarm. This issue
is intensified by the fact that state-of-the-art systems for value analysis may compute
rather coarse approximations for very usual programming constructs and expressions
(Ghorbal et al (2010); see also example in Sect. 1.3).

1.2 Contribution

The main goal of the approach introduced in this paper is to compute tight approx-
imations for value analysis, and thus to reduce the number of false alarms it may
generate. To achieve this goal, we introduce a hybrid approach for value analysis
of floating-point programs that combines abstract interpretation (AI) and constraint
programming (CP) techniques. More precisely, we propose to exploit the refutation

ha
l-0

08
60

68
1,

 v
er

si
on

 1
 - 

10
 S

ep
 2

01
3



Verifying floating-point programs with CP and AI techniques 3

capabilities of constraint solvers to refine domains computed by abstract interpreta-
tion. We show that constraint solvers over floating-point numbers and over real num-
bers can significantly improve the precision of the value analysis. Experiments on
academic programs demonstrate that our system—named RAICP—is substantially
more precise than FLUCTUAT (Delmas et al, 2009), a state-of-the-art AI analyzer
dedicated to floating-point computations; especially on programs that are difficult to
handle with abstract interpretation techniques.

We also evaluated RAICP on a set of 55 benchmarks proposed by D’Silva et al
(2012) to demonstrate the capabilities of CDFL, a program analysis tool that embeds
an abstract domain in the conflict driven clause learning algorithm of a SAT solver.
RAICP was on average 4 times faster than CDFL, and it did not produce any false
alarm whereas FLUCTUAT did generate 11 false alarms.

We also applied RAICP to check a property of a real time software application
embedded in a car provided by Geensys/Dassault Systems1. RAICP proved the prop-
erty for a realistic system service time. RAICP also compared well on this example
with CBMC, a state-of-the-art bounded model checker based on a SAT solver.

To sum up, RAICP is a promising framework for computing accurate domain
approximations in floating-point programs and thus for proving properties of hybrid
systems with floating-point and integer computations.

Before going into the details, we illustrate in the next subsection how our ap-
proach works on a small example.

1.3 Motivating example

The program in Fig. 1 contains only linear expressions and a sequence of two condi-
tional statements. This quite simple program is difficult to handle for AI-based anal-
yses. On floating-point numbers—as well as on real numbers—this function returns
a value in the interval [0,50]. Indeed, the pre-condition and the assignment of line 5
state the following constraints on g and y: {x = f +2∗g and f ,g ∈ [−10,10]}. Thus,
from the conditional statement of line 7 we can derive the following information:

– then branch, line 8: g ∈ [−10,5], and thus y ∈ [−10,5] at the end of this branch;
– else branch, line 11: g∈]−5,10], and thus y∈ [−10,5[ at the end of this branch.

Then, from the conditional statement of line 14, we obtain z ∈ [0,50].
However, FLUCTUAT fails to compute a good approximation for z. With zono-

tope-based abstract domains, FLUCTUAT over-approximates z to [0,100], both over
the real numbers and the floating-point numbers. The difficulty for AI techniques
is to intersect the abstract domains computed for x at lines 5 and 7. Actually, AI
techniques are unable to derive from these statements any constraint on g. As a con-
sequence, FLUCTUAT estimates that g ranges over [−10,10] in the then and else

branches of the first conditional statement. FLUCTUAT’s analysis of the second con-
ditional statement is more precise, but the upper bound of z is overestimated since it
relies on the coarse over-approximation of g and y computed previously.

1 http://www.3ds.com/
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4 Olivier Ponsini et al.

1 /∗ Pre−condition : f ,g ∈ [−10,10] ∗/
2 float foo(float f, float g) {

3 float x, y, z;

4

5 x = f + 2 * g;

6

7 if (x <= 0) {

8 y = g;

9 }

10 else {

11 y = -g;

12 }

13

14 if (y >= 0) {

15 z = 10*y;

16 }

17 else {

18 z = -y;

19 }

20

21 return z;

22 }

Fig. 1 Function foo

On this example, RAICP managed to shrink the domain of z to [0,50]. To do
so, it successively used AI techniques and CP techniques between consecutive merge
points of the control flow graph of the program. The key idea is to build one constraint
system for each path between successive merge points, and to apply CP filtering
techniques on each of these systems to refine the approximations computed by AI on
the corresponding path. Merge points of program foo are at lines 13 and 21; for the
sake of uniformity, we consider also the program’s entry point as a merge point.

There are two paths between the program’s entry point and the first merge point.
Consider the path through the then branch of the first conditional statement. AI
techniques compute on this path the following approximations: f ,g,y ∈ [−10,10],
x ∈ [−10,0]. So, the constraint system built for this path is:

C1 = {x = f +2∗g∧ x≤ 0∧ y = g∧−10≤ f ∧ f ≤ 10∧−10≤ g∧g≤ 10
∧−10≤ y∧ y≤ 10∧−10≤ x∧ x≤ 0}

CP filtering techniques reduce the domain of g to [−10,5] and shrink the domain of
y to [−10,5] with constraint system C1. In a similar way, for the path going through
the else branch of the first conditional statement, we obtain the constraint system:

C2 = {x = f +2∗g∧ x > 0∧ y =−g∧−10≤ f ∧ f ≤ 10∧−10≤ g∧g≤ 10
∧−10≤ y∧ y≤ 10∧0 < x∧ x≤ 10}

Here, CP techniques shrink the domain of y to [−10,5[ with constraint system C2.
We merge the domains computed for every variable on the different paths reach-

ing a merge point. So, at line 13, the domain of y becomes [−10,5], that is the smallest
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Verifying floating-point programs with CP and AI techniques 5

closed interval including all the values in [−10,5]∪ [−10,5[. Note that this domain is
sharper than the one computed by FLUCTUAT, i.e. y ∈ [−10,10]. These new domains
are then used for analyzing the rest of the program.
On program foo, the analysis goes on from line 13 to the next merge point at line 21.
Again, we generate a constraint system for each of the two paths. For the path through
the then branch of the second conditional statement, AI techniques shrink the do-
main of y to [0,5] and of z to [0,50]. Hence, the constraint system for this path is
{y≥ 0∧ z = 10∗ y∧−10≤ y∧ y≤ 5∧0≤ z∧ z≤ 50}. CP filtering techniques can-
not reduce anymore the domain of z with this constraint system. Likewise, for the
path going through the second conditional statement, RAICP builds the constraint
system {y < 0∧ z =−y∧−10≤ y∧y≤ 5∧0 < z∧ z≤ 10}. Here again, CP filtering
techniques cannot achieve any reduction of the domain of z. Finally, at the last merge
point, RAICP computes the union of domains and we obtain z ∈ [0,50]∪]0,10] =
[0,50].

It is worth noting that RAICP does not generate one constraint system for each
execution path in the control flow graph (CFG) of a program. We split programs
according to the merge points in the CFG and we generate one constraint system per
path going from one merge point to the next merge point. Thus, for a program with a
succession of n conditional statements, we would only generate 2n constraint systems
whereas the program includes 2n execution paths. At each merge point, we use CP
filtering techniques to shrink the domains computed by abstract interpretation. Then
the analysis goes on with the reduced domains. Note also that the CFG exploration
is performed on-the-fly: exploration stops as soon as we detect that the constraint
system of the current path is inconsistent, i.e. when we detect that the current path is
infeasible.

Now, assume we want to verify a post-condition p1 that states that the value re-
turned by function foo is always less than 75. Since AI-based analysis approximates
the domain of z by ∈ [0,100], it would infer that the post-condition may not hold, and
hence generating a false alarm. In contrast, RAICP can ensure that post-condition p1
holds. Here, the proof is trivial since the upper bound of z is strictly smaller than 75.
However, in practice this proof may be more difficult and we apply the following pro-
cess: to check a property defined over the program variables, we add the negation of
this property to each of the constraint systems generated between the last merge point
and the end of the program. If all these systems are inconsistent, we can conclude that
the post-condition holds; otherwise, the post-condition may be violated.

In program foo, we have two paths from the merge point at line 13 to the end
of the program. So, to prove post-condition p1, we generate the following constraint
systems:

{y≥ 0∧ z = 10∗ y∧ z≥ 75∧ z≤ 50∧·· ·}
{y < 0∧ z =−y∧ z≥ 75∧ z≤ 50∧·· ·}

Both systems are trivially inconsistent and thus, we can ensure that post-condition p1
holds.

For program properties specified as assertions inside the program, we apply the
same reasoning as for a post-condition: we consider the constraint systems that cor-
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6 Olivier Ponsini et al.

Fig. 2 Half-disk approximations by intervals (in red), zonotope (in green), and polyhedron (in blue)

respond to paths reaching the assertion from previous merge points together with the
negation of the assertion.

1.4 Outline of the paper

In Sect. 2, we recall basics on abstract interpretation and constraint programming.
Sect. 3 concerns related works. RAICP is described in details in Sect. 4. Section 5
gives some insights into the implementation and analyses the experiments and their
results.

2 Background

Before going into the details, we recall basics on abstract interpretation and constraint
programming techniques that are useful to understand the rest of this paper. Readers
familiar with these techniques may skip the corresponding sections.

2.1 Abstract interpretation

Abstract interpretation methods define an abstract semantics that approximates the
concrete semantics of programs. An abstract semantics is built upon an abstract do-
main that determines a trade-off between precision and speed of the analysis.

An abstract domain approximates the concrete state of a program by considering
only some specific properties of the state. Then, all concrete operations are mapped to
corresponding operations in the abstract domain. Special operations allow to approx-
imate program loops in very short time. These operations are designed to preserve all
the concrete behaviors of the program.

The choice of an abstract domain is a critical issue. As we can observe on Fig. 2,
the approximation of the half-disk in black by a polyhedron is much more precise than
the approximation by a box of intervals. The issue is that operations like intersection
between polyhedra require computationally expensive algorithms whereas these op-
erations are trivial on intervals. Zonotopes (Goubault and Putot, 2006) offer a good
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Verifying floating-point programs with CP and AI techniques 7

Fig. 3 A false alarm occurs when the abstract semantics intersects the forbidden zone while the concrete
semantics does not intersect this zone. Forbidden zones are in red, the abstract semantics is in green, and
the concrete semantics is the set of curves.

trade-off between performance and precision. Zonotopes are sets of affine forms that
preserve linear correlations between variables and keep track of the statements in-
volved in the loss of accuracy of floating-point computations. Zonotopes have never-
theless some drawbacks: approximations of some common program constructs, such
as conditionals and nonlinear expressions, are not accurate.

An abstract semantics is a super-set of the concrete program semantics, and thus
AI-based analyses are sound but incomplete. In other words, since the domains of
the variables are over-approximated by value analysis, properties proved true with
the abstract semantics are actually true on the concrete one, but properties violated
with the abstract semantics may hold with the concrete one. The latter case is called
a false alarm when properties represent desired behaviors of the program (see Fig. 3
extracted from Cousot’s informal introduction to abstract interpretation2).

To sum up, AI techniques provide a good trade-off between precision and per-
formance. They scale well, but they lack of precision for programs with non-linear
expressions and with numerous conditionals.

2.2 Constraint programming

Constraint Programming (CP) is a way of modeling and solving combinatorial op-
timization problems. CP combines techniques from artificial intelligence, logic pro-
gramming, and operations research. Several industrial solvers and academic solvers
are available, e.g. ILOG/IBM3, Gecode4. There are many successful industrial ap-
plications, e.g. timetabling (Dutch railway), hardware verification (Hentenryck et al,
2009), scheduling, planning (Rossi et al, 2006, Part II).

2 http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
3 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
4 http://www.gecode.org
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8 Olivier Ponsini et al.

The key features of CP are domain filtering and search strategies. Domain filter-
ing algorithms consider each constraint separately and remove values that are trivially
inconsistent. Search strategies try to exploit the structure of the problem to guide the
variable instantiation process. In this paper we mainly use constraint techniques over
continuous domains5.

A numeric constraint satisfaction problem (X ,D ,C ) is defined by:

– X = {x1, . . . ,xn}, a set of variables;
– D = {Dx1 , . . . ,Dxn}, a set of domains. Dxi contains all acceptable values for vari-

able xi;
– C = {c1, . . . ,cm}, a set of constraints

The constraint programming framework over continuous domains is based on a
branch & prune schema which is best viewed as an iteration of two steps:

1. Pruning the search space
2. Making a choice to generate two (or more) sub-problems

The pruning step reduces an interval when it can prove that the upper bound or the
lower bound does not satisfy some constraint. The branching step splits the interval
associated to some variable in two or more intervals (often with the same width).

Pruning techniques on continuous domains are based on partial consistencies,
that is to say a consistency of a relaxation of the system. More precisely, it is a prop-
erty that holds on a subset of variables or constraints and that is associated with a
filtering algorithm. Informally speaking, a constraint system C satisfies a partial con-
sistency property if a relaxation of C is consistent. For instance, consider X = [x,x]
and C(x,x1, ...,xn) ∈ C : if C(x,x1, ...,xn) does not hold for any values v ∈ [x,x′], then
X may be shrunken to X = [x′,x].

2B-consistency (Lhomme, 1993) states a local property on the bounds of the do-
mains of a variable at a single constraint level. In other words, the domain of variable
x is 2B-consistent if, for any constraint c, there exists at least one value in the domains
of all other variables such that c can be satisfied when x is set to the upper or lower
bound of its domain.
Example: Let S1 = {x+ y = 2,y≤ x−1,x ∈ [0,100],y ∈ [0,100]} and S2 = {x+ y =
2,y ≤ x− 1,x ∈ [1,2],y ∈ [0,1]} be two constraint systems. S1 is not 2B-consistent.
Indeed, the domain of x is not 2B-consistent since 100 + y = 2 is not satisfiable
when Dy = [0,100]. S2 is 2B-consistent. Indeed, Dx is 2B-consistent since 1+ y = 2,
2+ y = 2, y ≤ 1− 1 and y ≤ 2− 1 are all satisfiable when Dy = [0,1]. A similar
reasoning can show that Dy is 2B-consistent in S2.

2B-consistency pruning algorithms successively narrow the domains of the vari-
ables. The approximation of the projection of a constraint c on its variables is the basic
tool for narrowing domains. The projection Πx(c) of the constraint c(x,x1, · · · ,xn) on
x is the set defined as follows:

Πx(c) = {v ∈ Dx | ∃(v1, · · · ,vn) ∈ Dx1 ×·· ·×Dxn s.t. c(v,v1, · · · ,vn) holds}.

5 For an informal introduction, see http://www.it.uu.se/research/group/astra/

CPmeetsCAV/slides/rueher_Continuous_Domains.pdf
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Verifying floating-point programs with CP and AI techniques 9

The approximation of Πx(c) is the interval [min(Πx(c)),max(Πx(c))]. In practice,
this approximation is often computed on constraints where the multiple occurrences
of variables have been replaced by fresh variables with the same domain.
When the domain of a variable has been narrowed, all the constraints in which this
variable occurs will be processed again. The filtering ends when none of the domains
cannot be narrowed anymore. If at least one domain becomes empty, the system is
not 2B-consistent.

Stronger consistencies have also been defined. For instance, 3B-consistency (Lhomme,
1993) checks whether 2B-Consistency can be enforced when the domain of a variable
is reduced to the value of one of its bounds in the whole system. Roughly speaking,
3B-pruning algorithms are based on a shaving process that tries to shrink the interval
of a given variable. For instance, let x be a variable the domain of which is X = [x,x].
A standard 3B-pruning algorithm will first try to show that the constraint system is
not 2B-consistent when X is set to [x, x+x

2 ]; if it succeeds, it will remove [x, x+x
2 ] from

X and the process goes on; otherwise, the pruning process restarts with a smaller do-
main for X , e.g., [x, x+x

4 ]. The process stops when the domain of X becomes smaller
than a given ε .

To sum up, the strong points of CP are its refutation capabilities and its great
flexibility. However, the pruning algorithm may be time consuming on large domains.

3 Related works

Various methods address static validation of programs with floating-point computa-
tions: abstract interpretation based analyses, proofs of programs with proof assistants
or with decision procedures in automatic solvers.

Analyses based on abstract interpretation capture rounding errors due to floating-
point computation in their abstract domains. They are usually fast, automatic, and
scalable. However, they may lack of precision. ASTRÉE (Cousot et al, 2007) is one of
the most famous tool in this family of methods: it estimates the value of the program
variables at every program point and can show the absence of run-time errors, e.g.
division by zero, arithmetic overflow. FLUCTUAT (Delmas et al, 2009) estimates in
addition the accuracy of the floating-point computations: it bounds the difference
between the values taken by variables when the program is given a real semantics
and when it is given a floating-point semantics.

Proof assistants like Coq (Boldo and Filliâtre, 2007) or HOL (Harrison, 1999)
allow their users to formalize floating-point arithmetic. Proofs of program properties
are done manually in the proof assistants that only guarantee the correctness of the
proof. Even though some parts of the proofs may be automatized, the user must still
make a significant effort to conduct the proof. Moreover, when a proof strategy fails
to prove a property, the user often does not know whether the property is false or
whether he could prove it with another strategy. The Gappa tool (de Dinechin et al,
2011) combines interval arithmetic and term rewriting from a base of theorems. The
theorems rewrite arithmetic expressions so as to compensate for the shortcomings of
interval arithmetic, e.g. loss of dependency between variables. Whenever the com-
puted intervals are not precise enough, theorems can be manually introduced or the
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10 Olivier Ponsini et al.

input domains can be subdivided. Again, the cost for the user of this semi-automatic
method is considerable. Ayad and Marché (2010) propose axiomatizing floating-point
arithmetic within first-order logic to automate the proofs conducted in proof assis-
tants such as Coq by calling external SMT (Satisfiability Modulo Theories) solvers
and Gappa. Their experiments show that human interaction with the proof assistant
is still required.

The classical bit-vector approach of SAT solvers is ineffective on programs with
floating-point computations because of the size of the domains of floating-point vari-
ables and the cost of bit-vector operations. An abstraction technique was devised
for CBMC by Brillout et al (2009). It is based on under and over-approximation of
floating-point numbers with respect to a given precision expressed as a number of
bits of the mantissa. However, this technique remains slow. D’Silva et al (2012) de-
veloped recently CDFL, a program analysis tool that embeds an abstract domain in
the conflict driven clause learning algorithm of a SAT solver. CDFL is based on a
sound and complete analysis for determining the range of floating-point variables in
loop-free control software. The authors state that CDFL is more than 200 times faster
than CBMC (D’Silva et al, 2012). In Section 5.3, we compare the performances of
CDFL and RAICP on a set of benchmarks proposed by D’Silva et al.

Links between abstract interpretation and constraint logic programming have
been studied at a theoretical level for a long time (Codognet and Filé, 1992). More
recently, Denmat et al (2007) introduced a new global constraint to model itera-
tive arithmetic relations between integer variables. The associated filtering algorithm
is based on abstract interpretation over polyhedra. Pelleau et al (2013) designed a
generic constraint solver parametrized by abstract domains. They focus on mixed
discrete-continuous problems over the integer and real numbers. In this paper, we
show how abstract interpretation and constraint programming techniques can com-
plement each other for the static analysis of floating-point programs.

4 RAICP, a hybrid approach

As said before, RAICP, the approach we introduce in this paper, is based on a piece-
wise exploration of a program CFG that alternates path analysis and merging steps.
Nodes of the CFG where two branches join are selected as merge points. We build
one constraint system per path between two successive merge points. We use CP fil-
tering techniques on these systems to reduce variable domains first computed with AI
techniques. At merge points, the reduced domains for the different paths are merged
and exploration goes on with the next part of the CFG.

In Sect. 4.1, we detail the notions of merge point and path exploration of a CFG.
Then, in Sect. 4.2, we give the algorithms implemented in RAICP to perform piece-
wise exploration of the CFG and compute domain approximations on each piece of
the CFG.
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Verifying floating-point programs with CP and AI techniques 11

Fig. 4 CFG of program foo from Fig 1: nodes with black circles are merge points

4.1 Control flow graph exploration

A control flow graph is a standard graph representation of computations and con-
trol flow in a program. Nodes in the graph are basic blocks of the program, that is a
sequence of consecutive statements without any branching in it. Directed edges rep-
resent possible flow of control from the end of one block to the beginning of another.
A control flow graph contains one entry node, a node without incoming edge, and
one exit node, a node without outgoing edge.

In our CFGs, we will consider the following types of nodes:

– assignment nodes containing a program assignment;
– assertion nodes containing a logical expression to be checked;
– while nodes containing a loop condition and a loop body;
– if nodes containing a branching condition;

We define specific locations in the program that correspond to nodes in the CFG
where two branches join. We call these locations merge points. In addition, the exit
node is always a merge point. Our CFGs are acyclic graphs since we unfold loops a
bounded number of times before enclosing them in a while node.

For instance, the graph in Fig. 4 is the CFG of function foo described in Fig. 1.
Edges labeled T (resp. F) represent the control flow when the associated condition
is true (resp. false). The merge points are the nodes with a black circle. The second
merge point is not the assignment node that follows the branch junction but the exit
node: a merge point is always the last node of a straight sequence of nodes after a
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12 Olivier Ponsini et al.

Algorithm 1: RAICP

Data:
Q, a queue of merge points.
D, an array of sets s.t. D[m] is the set of variable domains at merge point m.
D I , the initial variable domains.
nI , the CFG’s entry node.
nE , the CFG’s exit node.

Result:
D[nE ] is the set of variable domains at the end of the program.
error is a set of domains when an assertion may be violated; otherwise it is the empty set.

1 error←− explorePaths(nI , D I , /0)
2 while error = /0 and Q 6= /0 do
3 n←− pop(Q)
4 if n 6= nE then
5 error←− explorePaths(n, D[n], /0)
6 end
7 end

junction. Note that program expressions were put into DSA-like form6 to facilitate
constraint generation.

As said before, we only explore paths between two successive merge points. Of
course, this process may be less precise than an exploration of the full length paths,
but it is sound: variable domains are over-approximated for value analysis and prop-
erties found to be true hold over the full length paths too.
The CFG is explored using a forward analysis starting at the beginning of the pro-
gram. We generate one constraint system for each path between two consecutive
merge points. At any point of a path, the possible states of the program are repre-
sented by a constraint system over the program variables. To this end, the semantics
of each program statement is expressed by constraints. Variable domains are inter-
vals over the integers, the floating-point numbers, or the real numbers depending on
the type of the variable. This technique for representing programs by constraint sys-
tems was introduced for bounded program verification in CPBPV by Collavizza et al
(2010).

4.2 RAICP algorithm

In this section, we detail how RAICP explores the CFG between consecutive merge
points. We also describe the process for computing domain approximations.

4.2.1 Exploring paths

Algorithm 1 launches the exploration of the paths from each merge point. It uses a
queue of merge points ordered by increasing depth in the CFG, i.e. the number of
nodes from the entry node to the merge point. RAICP stores in D the result of the

6 DSA (Dynamic Single Assignment) is a semantic preserving program transformation in which each
variable is assigned at most once on each program path (Barnett and Leino, 2005).
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Verifying floating-point programs with CP and AI techniques 13

value analysis of the program. Initially, all elements of D are empty sets and at the
end D[m] contains the domain approximations computed at merge point m.

When the program contains a user assertion, RAICP stores in set error the result
of the assertion checking process: error is empty if the assertion holds; otherwise,
error contains values that may violate the assertion.

Algorithm 1 calls function explorePaths to explore all the paths between a
given node and the next merge points. Exploration of the CFG stops when a prop-
erty may be violated or all merge points were considered. Function explorePaths

updates the domains stored in D during path exploration. To this end, the function
generates on-the-fly one constraint system per path while visiting successively the
nodes of the path. At an if node, explorePaths explores successively the paths in
each branch of the control flow. Note that the function checks the consistency of the
constraint system of a branch before exploring it.

At each merge point m, explorePaths calls function approximate for comput-
ing an approximation of the domains for the current path. Function approximate

combines AI and CP techniques (see Sect. 4.2.2). Function explorePaths updates
D[m] with the smallest closed interval including all the values in the union of the
domains computed for the different paths.

For while nodes, explorePaths uses AI techniques to approximate the domains
at the end of the loop. The function then goes on exploring the path with these do-
mains and the negation of the loop condition in the constraint system. Approximating
loops with AI techniques ensures that the length of paths are bounded, and as a result
the constraint system generation always terminates.

When explorePaths reaches an assertion node, it will check whether the asser-
tion holds on the current path. To this end, explorePaths calls function approximate
with a constraint system made up of the negation of the assertion to check and of the
constraints collected on the path starting at the previous merge point. When function
approximate can detect an inconsistency, the assertion holds and exploration goes
on with the next node on the path. Otherwise, the property checking process is in-
conclusive: path exploration stops and the domains computed by approximate are
returned.

4.2.2 Computing approximations

Function approximate computes an approximation of the variable domains for a
given path between two successive merge points. It takes the domains defined at
the beginning of the path (D) and the constraints collected on the path (C ). The
function returns domains reduced according to the constraints, or an empty set if an
inconsistency of the constraint system has been detected.

Function approximate starts by checking whether the set of constraints C is not
trivially inconsistent: consistentsynt just checks whether a constraint and its syntactic
negation are in C . This removes some slow convergence issues that may occur when
trying to solve pathological systems such as {a≥ b∧a < b}. Note that a and b must
be identical expressions in both constraints: we do not perform any formal expression
simplification.
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14 Olivier Ponsini et al.

Function approximate
Input:

D , current variable domains.
C , current set of constraints.

Output: A set of domains. If C is found inconsistent, the returned set is empty.

1 Function approximate(D , C ) is
2 if ¬consistentsynt(C ) then
3 return /0
4 else
5 DAI ←− filterAI(D , C )
6 if DAI = /0 then
7 return /0
8 else
9 return filterCP(DAI , C )

10 end
11 end
12 end

Function f ilterAI calls an AI library to analyze the part of the program corre-
sponding to the path between the two considered merge points. It returns an empty
set when it detects that the path is infeasible. Function f ilterCP applies strong partial
consistencies to the constraint system of the path updated with the domains computed
by f ilterAI .

5 Experiments

In this section, we first describe the prototype of RAICP we have implemented.
Then, we report the experiments we have performed to evaluate RAICP. We com-
pare RAICP with FLUCTUAT on academic programs, and we evaluate the property
checking capabilities of RAICP both on a set of academic benchmarks provided by
the authors of CDFL and on an industrial benchmark.

Academic programs are available at http://users.polytech.unice.fr/~rueher/
Benchs/ASE_RAICP. All results were obtained on an Intel Core 2 Duo at 2.8 GHz
with 4 GB of memory running Linux using FLUCTUAT version 3.1247, REALPAVER
version 0.4, CPLEX version 12.3, CBMC version 4.5 and the downloadable version
of CDFL.

5.1 Implementation

We implemented a prototype of RAICP that uses:

– FLUCTUAT for AI-based computations,
– REALPAVER for constraint solving over real numbers, and
– FPCS for constraint solving over floating-point numbers.

More precisely, RAICP takes as input a C program and builds the corresponding CFG.
Each explored path of the CFG between two merge points is transformed into both
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Verifying floating-point programs with CP and AI techniques 15

a set of constraints and a C program. RAICP calls the FLUCTUAT library on these
generated C programs. Then, RAICP passes the domains returned by FLUCTUAT and
the set of constraints to the constraint solver FPCS (resp. REALPAVER) to reduce
the domains over the floating-point numbers (resp. the real numbers). The domains
returned by the constraint solver will be used by RAICP for the next steps of the
analysis.

Neither REALPAVER nor FPCS can deal with constraints over integers. As a
workaround, the prototype handles constraints over integers with the MILP solver
IBM ILOG CPLEX in separate constraint systems. The current prototype does not
yet handle variables that appear both in constraints over integers and floating-points.

Our prototype uses 2B-like partial consistencies7 to cut infeasible paths dur-
ing CFG exploration and 3B-like partial consistencies8 to reduce domains at merge
points. This choice is motivated by performance: 2B-like consistency algorithms are
much faster than 3B-like consistency algorithms, but the latter may achieve a much
stronger pruning.

RAICP analyzes C programs that conform to IEEE 754 standard with the follow-
ing restrictions: size of arrays are bounded; pointers, bitwise operators and statements
that interrupt the control flow (goto, continue, and break) are not handled. How-
ever, all aspects of computations over floating-point numbers are not specified in the
IEEE 754 standard and so are implementation-dependent. We assume here that the
C programs will be compiled with GCC without any optimization option and run on
an x86 architecture managed by a 32-bit Linux operating system9. In the current im-
plementation, we handle basic arithmetic operations, comparisons and some classical
functions like square root.

5.1.1 AI-based static analyzer

FLUCTUAT is a static analyzer for C programs that proceeds by abstract interpreta-
tion. It is specialized in estimating the precision of floating-point computations (Del-
mas et al, 2009). FLUCTUAT is developed by CEA-LIST10 and was successfully used
for industrial applications of several tens of thousands of lines of code in transporta-
tion, nuclear energy, or avionics areas. FLUCTUAT compares the behavior of the ana-
lyzed program over real numbers and over floating-point numbers. In other words, it
allows to specify ranges of values for the program input variables and computes for
each program variable v:

– bounds for the domain of variable v considered as a real number;
– bounds for the domain of variable v considered as a floating-point number;
– bounds for the maximum error between real and floating-point values;
– the contribution of each statement to the error associated with variable v ;

7 The prototype uses REALPAVER’s HC4-consistency or FPCS’s 2B(w)-consistency.
8 The prototype uses REALPAVER’s BC5-consistency in paving mode or FPCS’s 3B(w)-consistency.
9 All computations are done using 80 bits floating point numbers (long double). Inputs are first con-

verted from their base type to long double while the computation result is converted from double to the
awaited result base type.

10 http://www-list.cea.fr/validation_en.html
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16 Olivier Ponsini et al.

– the contribution of the input variables to the error associated with variable v.

FLUCTUAT uses the weakly relational abstract domain of zonotopes (Goubault
and Putot, 2006). Zonotopes are sets of affine forms that preserve linear correlations
between variables. They offer a good trade-off between performance and precision for
floating-point and real number computations. Indeed, the analysis is fast and scales
well, processes accurately linear expressions, and keeps track of the statements in-
volved in the loss of accuracy of floating-point computations. To increase the analy-
sis precision, FLUCTUAT allows to use arbitrary precision numbers or to subdivide up
to two input variable intervals. However, over-approximations computed by FLUC-
TUAT may be very large because the abstract domains do not handle well conditional
statements and non-linear expressions.

5.1.2 Constraint solver over the real numbers

REALPAVER is an interval solver for numerical constraint systems over the real num-
bers11 (Granvilliers and Benhamou, 2006). It handles non-linear constraints defined
with the usual arithmetic operations as well as transcendental elementary functions.

REALPAVER computes reliable approximations of continuous solution sets using
correctly rounded interval methods and constraint satisfaction techniques. More pre-
cisely, the computed domains are closed intervals bounded by floating-point numbers.
REALPAVER implements several partial consistencies. An approximation of a solu-
tion is described by a box, i.e., the Cartesian product of the domains of the variables.
REALPAVER either proves the unsatisfiability of the constraint system or computes
small boxes that contains all the solutions of the system.

The REALPAVER modeling language does not provide strict inequality and not-
equal operators, which can be found in conditional expressions in programs. As a
consequence, in the constraint systems generated for REALPAVER, strict inequalities
are replaced by non strict ones and constraints with a not-equal operator are ignored.
This may lead to over-approximations but it is safe since no solutions are lost.

We experimented with various consistencies implemented in REALPAVER: BC5,
a combination of 2B and box consistencies with interval Newton method, provided
the best trade-off between time cost and domain reduction.

5.1.3 Constraint solver over the floating-point numbers

Constraint solvers over the real numbers based on interval arithmetic cannot handle
constraints over the floating-point numbers because of the specific properties of the
floating-point numbers. The tricky point is that constraints that do not have any solu-
tions over the real numbers may hold over the floating-point numbers. Moreover, re-
lations that hold over the real numbers may not hold over the floating-point numbers.
Finite domain solvers are ineffective for handling constraints over the floating-point
numbers due to the huge size of the domains.

11 REALPAVER web site: http://pagesperso.lina.univ-nantes.fr/info/perso/

permanents/granvil/realpaver/
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Verifying floating-point programs with CP and AI techniques 17

That’s why we use here FPCS, a constraint solver designed to solve a set of
constraints over floating-point numbers without losing any solution (Michel, 2002;
Marre and Michel, 2010). FPCS implements 2B-consistency with projection func-
tions adapted to floating-point arithmetic (Michel et al, 2001; Botella et al, 2006).

Inverse projection functions that keep all the solutions are the most difficult to
implement. Indeed, direct projections only requires a slight adaptation of classical
results on interval arithmetic, but inverse projections do not follow the same rules be-
cause of the properties of floating-point arithmetic. More precisely, each constraint is
decomposed into an equivalent binary or ternary constraint by introducing new vari-
ables if necessary. A ternary constraint x = y� f z, where� f is an arithmetic operator
over the floating-point numbers, is decomposed into three projection functions:

– the direct projection, Πx(x = y� f z);
– the first inverse projection, Πy(x = y� f z);
– the second inverse projection, Πz(x = y� f z).

A binary constraint of the form x� f y, where � f is a relational operator among
==, !=, <, <=, >, and >=, is decomposed into two projection functions: Πx(x� f y)
and Πy(x� f y). The computation of the approximation of these projection functions
is mainly derived from interval arithmetic and benefits from floating-point numbers
being a totally ordered finite set.

FPCS also implements stronger consistencies—e.g., kB-consistencies (Lhomme,
1993)—to deal with the classical issues of multiple occurrences and to reduce more
substantially the bounds of the domains of the variables.

The floating-point domains handled by FPCS also include infinities. Moreover,
FPCS handles all the basic arithmetic operations, as well as most of the usual math-
ematical functions. Type conversions are also correctly processed.

On our experiments, 3B-consistency pruning worked well with FPCS whereas
2B-consistency was not strong enough to reduce the domains computed by FLUC-
TUAT.

5.2 Comparison with FLUCTUAT for value analysis

We report here experiments on a set of academic programs with conditionals, non-
linearities, and loops. We show that RAICP is more efficient than FLUCTUAT alone
on these benchmarks.

5.2.1 Conditionals

The first benchmark concerns conditional statements, for which abstract domains
need to be intersected with the condition of the conditional statement. The function
gsl poly solve quadratic comes from the GNU scientific library and contains
several conditional statements. It computes the two real roots of a quadratic equation
ax2 +bx+ c and puts the results in variables x0 and x1.

Table 1 shows analysis times and approximations of the domains of variables x0
and x1 for a given configuration of the input variables. The first two rows present
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18 Olivier Ponsini et al.

Table 1 Domains of the roots of the gsl_poly_solve_quadratic function

a ∈ [−1,1] b ∈ [0.01,1] c ∈ [0.01,1]
x0 x1 Time

R FLUCTUAT [−∞,∞] [−∞,∞] 0.02 s
RAICP [−∞,0] [−200.1,∞] 1.66 s

F FLUCTUAT [−∞,∞] [−∞,∞] 0.02 s
RAICP [−∞,0] [−312.51,∞] 0.95 s

Table 2 Domains of the return value of sinus and rump functions

sinus

x ∈ [−1,1]

rump

x ∈ [7×104,8×104]
y ∈ [3×104,4×104]

Domain Time Domain Time

R FLUCTUAT [−1.009,1.009] 0.02 s [−1.168×1037,1.992×1037] 0.02 s
RAICP [−0.842,0.842] 0.93 s [−1.144×1036,1.606×1037] 1.82 s

F FLUCTUAT [−1.009,1.009] 0.02 s [−1.168×1037,1.992×1037] 0.02 s
RAICP [−0.855,0.85] 0.86 s [−1.168×1037,1.992×1037] 0.86 s

the results of FLUCTUAT and RAICP (with REALPAVER) over the real numbers. The
next two rows present the results of FLUCTUAT and RAICP (with FPCS) over the
floating-point numbers. FLUCTUAT’s over-approximation is so large that it does not
give any information on the domain of the roots, whereas RAICP drastically reduce
these domains both over R and F.

5.2.2 Non-linearity

The abstract domain used by FLUCTUAT is based on affine forms that do not allow
an exact representation of non-linear operations: the image of a zonotope by a non-
linear function is not a zonotope in general. Non-linear operations are thus over-
approximated very roughly. FPCS handles the non-linear expressions better. This is
illustrated on function sinus (see Table 2, column sinus). This function computes
the 7th-order Taylor series of function sinus: x− x3

6 + x5

120 −
x7

5040 .
FPCS and REALPAVER also use approximations to handle non-linear terms and

thus cannot always achieve a significant pruning. This is outlined in Table 2 by pro-
gram rump. This program computes a very particular polynomial designed by Rump
(2010) to illustrate a catastrophic cancellation phenomenon:

333.75y6 + x2(11x2y2− y6−121y4−2)+5.5y8 +
x
2y

5.2.3 Loops

FLUCTUAT unfolds loops a bounded number of times12 before applying a widening
operator to find a fixed point for the domains at the end of the loop. In RAICP, by
default, we let FLUCTUAT compute the domains for a loop. However, RAICP can also

12 Default value is ten times.
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Verifying floating-point programs with CP and AI techniques 19

Table 3 Domain of the return value of the sqrt and bigLoop functions

sqrt #1: x ∈ [4.5,5.5] sqrt #2: x ∈ [5,10] bigLoop
Domain Time Domain Time Domain Time

R FLUCTUAT [2.116,2.354] 0.02 s [2.098,3.435] 0.06 s [−∞,∞] 0.03 s
RAICP [2.121,2.346] 0.97 s [2.232,3.165] 1.06 s [0,10] 1.09 s

F FLUCTUAT [2.116,2.354] 0.02 s [−∞,∞] 0.06 s [−∞,∞] 0.03 s
RAICP [2.120,2.351] 1.5 s [2.232,3.193] 4.97 s [0,10] 0.94 s

/∗ Pre−condition : x ∈ [4.5,5.5] ∗/
double sqrt(double x) {

double xn, xn1;

xn = x/2.0;

xn1 = 0.5*(xn + x/xn);

while (xn-xn1 > 1e-2) {

xn = xn1;

xn1 = 0.5*(xn + x/xn);

}

return xn1;

}

(a)

/∗ Pre−condition : x ∈ [0,10]
N ∈ [1,1000000] ∗/

double bigLoop(double x, int N) {

double a = 0.1;

int i = 1;

double y = x*x-x;

if (y < 0) {

if (x > 1.2) {

a = -2;

}

}

while (N > i) {

x = a * x;

i = i + 1;

}

return x;

}

(b)

Fig. 5 Programs (a) sqrt with input domain #1 and (b) bigLoop

unfold loops until either the exit condition of the loop becomes true or a given bound
is reached. In the latter case, we rely again on FLUCTUAT to compute the domains
for the loop after the unfolding process.

Program sqrt (see Fig. 5a) is based on the so-called Babylonian method that
computes an approximate value, with an error of 1× 10−2, of the square root of a
number greater than 4. Ten unfoldings are sufficient to exit the loop with the two
different input domains used in this benchmark (see Table 3). FLUCTUAT obtains ac-
curate results except in the second configuration over F where it could not achieve
any reduction: the different interpretation of a conditional statement over R and over
F leads to different paths in the program. With an unfolding bound of ten—like in
FLUCTUAT—RAICP shrinks the domain over F to [2.232,3.193] in the second con-
figuration.

Program bigLoop (see Fig. 5b) contains very simple non-linear expressions fol-
lowed by a loop that iterates one million times. FLUCTUAT alone fails to analyze
accurately the loop in this program because of the over-approximation of the non-
linear expressions before the loop. CP techniques alone run out of time and memory
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20 Olivier Ponsini et al.

Table 4 Execution times and number of false alarms of CDFL, FLUCTUAT and RAICP

CDFL FLUCTUAT RAICP

Total execution time 208.99 s 16.06 s 56.25 s
False alarms 0 11 0

since it is far too expensive to unfold completely such loops. However, CP techniques
computed a good approximation of the non-linear expressions at the beginning of the
program. That’s why RAICP refined significantly the domains of the variables. This
example illustrates well that a tight cooperation between CP and AI techniques can
be very efficient.

5.3 Property checking on academic benchmarks

We used RAICP to check simple assertions that state numeric bounds on floating-
point program variables. These assertions come from benchmarks proposed by D’Silva
et al (2012) to evaluate CDFL13. CDFL is a program analysis tool that embeds the
interval abstract domain in the conflict driven clause learning algorithm of a SAT
solver. The benchmarks are made from 12 programs by varying the input variable
domains, the loop bounds, and the constants in the properties to check. All the pro-
grams are based on academic numerical algorithms, except Sac which is generated
from a Simulink controller model. We discarded 2 out of 57 benchmarks: one that is
related to integers only, and another one that merge integers and floats in the same
expressions.

On these benchmarks, CDFL was much more efficient than CBMC and much
more precise than ASTRÉE for approximating floating-point variable domains (D’Silva
et al, 2012). We compare in Table 4 the efficiency of RAICP, FLUCTUAT and CDFL
on these benchmarks. RAICP is on average 3.5 times slower than FLUCTUAT used
alone, but it is much more precise than FLUCTUAT: FLUCTUAT produced 11 false
alarms whereas RAICP successfully eliminated all these false alarms and reported
correctly all the 33 true properties.
In other words, RAICP is as effective as CDFL on these benchmarks for checking
assertions that state numeric bounds on floating-point program variables. On top of
it, RAICP is on average 3.5 times faster than CDFL.

It is however important to note that all of these systems may produce false alarms
in the general case.

5.4 Property checking on an industrial benchmark

Finally, we applied RAICP to an industrial system provided by Geensys/Dassault
Systems. The anti-lock braking system (ABS) is a real time software application run-
ning on an electronic unit embedded in a car. The system was designed with Simulink
and the embedded code was automatically generated from the Simulink model. The

13 These benchmarks are available at http://www.cprover.org/cdfpl
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Verifying floating-point programs with CP and AI techniques 21

Table 5 Validity results and execution times of CBMC, FLUCTUAT and RAICP on property P1 when
varying unfoldings

Number of CBMC FLUCTUAT RAICP
unfoldings Validity Time Validity Time Validity Time

1 valid 0.4 s valid 0.04 s valid 0.9 s
2 - > 3600 s unknown 0.03 s valid 1 s

100 - - unknown 1.47 s valid 19.2 s
1000 - - unknown 77.3 s valid 338.7 s
2000 - - unknown 413.9 s valid 1217.8 s

code contains computations over integer and floating-point variables and consists of
an infinite loop that repeatedly reads inputs and computes the output every 0.01 s.
Since we bound the number of unfoldings of the real-time loop, we can only check
assertions for a limited service time of the system. ABS will be active for at most
20 s when braking on a wet road with a maximum vehicle speed of 180 kilometers
per hour and a cautious deceleration value of 2.5 meters per squared second. This
means that at most 2 000 unfoldings of the real-time loop are required.

ABS prevents wheel lock when braking. It monitors wheel speed through sensors
and acts on an hydraulic valve. ABS looks for the tendency to lock of a wheel. It
computes the skidding rate of the slowest wheel as rs = 1− vslow

vcar
. ABS tries to main-

tain the optimal rate ro = 20%14. When rs is greater than ro, ABS starts controlling
braking.

Our industrial partner had specified property P1 as follows: ABS enters controlled
braking as soon as skidding rate is greater than 20%. The state of the ABS is an
internal variable, abs_state, that can take two predefined values: CONTROLLED or
UNCONTROLLED. The assertion to be checked for P1 is then:

(vslow < 0.8∗ vcar) =⇒ (abs_state= CONTROLLED)

We compared CBMC, FLUCTUAT, and RAICP on the checking of property P1.
We did not manage to run CDFL on these benchmarks. For checking this property,
the user was only interested by the behavior of the program with a semantics over the
floating-point numbers. We fixed a time-out of one hour. Table 5 shows that RAICP
could prove quite efficiently that property P1 holds up to the fixed 2 000 unfoldings
limit. Property P1 trivially holds at the first unfolding which corresponds to the ini-
tialization phase of the ABS. CBMC reached the time limit on the second unfolding.
This is probably due to the fact that CBMC falls into a slow convergence process.
FLUCTUAT is very fast, but it computes such coarse over-approximations that one
cannot determine whether the property holds or not.

6 Conclusion

In this paper, we introduced a new approach for computing tight intervals of floating-
point variables of C programs. The prototype of RAICP we developed relies on the

14 Actually, optimal rate depends on the road surface and varies between 30% and 10% .
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22 Olivier Ponsini et al.

static analyzer FLUCTUAT, on the floating-point solver FPCS, and the real number
solver REALPAVER. Thanks to these solvers, RAICP can exploit the refutation capa-
bilities of constraint techniques to refine the domains computed by FLUCTUAT.

This integration of AI and CP works well because the approximation of vari-
able bounds computed by AI is often small enough to allow efficient pruning with
partial consistencies. Even though the same domain reductions could sometimes be
achieved without starting from the approximation computed by FLUCTUAT, our ex-
periments show that the approximation computed by FLUCTUAT is required in pro-
grams with loops. In FLUCTUAT, sets of affine forms abstract non-linear expressions
and constraints. These sets constitute better approximations of linear constraint sys-
tems than the boxes used in interval-based constraint solvers. Nevertheless, they are
less adapted for non-linear constraint systems where filtering techniques used in nu-
meric CSP solving offer a more flexible and extensible framework.

We showed that RAICP is fast and efficient on programs that are representative of
the difficulties of FLUCTUAT (conditional constructs and non-linearities). The com-
puted approximations both over the real numbers and the floating-point numbers are
much sharper than the ones computed by AI techniques. The user has therefore more
facilities to identify suspicious values for which the behavior of the program over
the floating-point numbers is different from the behavior the user could expect over
the real numbers. Experiments on a significant set of benchmarks showed also that
RAICP is as precise and faster than CDFL, a state-of-the-art tool for bound analysis
and assertion checking on programs with floating-point computations.

Further work concerns a tighter integration of abstract interpretation and con-
straint solvers and the generation of counter-examples. For instance, the integration
of AI and CP could be done at the abstract domain level instead of the interval do-
main level. Likewise, the constraint systems generated by RAICP could be used for
generating counter-examples when we cannot prove that a property holds.
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Cousot P, Cousot R, Feret J, Miné A, Mauborgne L, Monniaux D, Rival X (2007)
Varieties of static analyzers: A comparison with ASTRÉE. In: 1st Joint IEEE/IFIP
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Abstract. Solving constraints over �oating-point numbers is a critical
issue in numerous applications notably in program veri�cation. Capa-
bilities of �ltering algorithms over the �oating-point numbers (F) have
been so far limited to 2b-consistency and its derivatives. Though safe,
such �ltering techniques su�er from the well known pathological prob-
lems of local consistencies, e.g., inability to e�ciently handle multiple
occurrences of the variables. These limitations also have their origins in
the strongly restricted �oating-point arithmetic. To circumvent the poor
properties of �oating-point arithmetic, we propose in this paper a new
�ltering algorithm, called FPLP, which relies on various relaxations over
the real numbers of the problem over F . Safe bounds of the domains
are computed with a mixed integer linear programming solver (MILP)
on safe linearizations of these relaxations. Preliminary experiments on a
relevant set of benchmarks are promising and show that this approach
can be e�ective for boosting local consistency algorithms over F .

1 Introduction

Critical systems are more and more relying on �oating-point (FP) computations.
For instance, embedded systems are typically controlled by software that store
measurements and environment data as �oating-point number (F). The initial
values and the results of all operations must therefore be rounded to some nearby
�oat. This rounding process can lead to signi�cant changes, and, for example,
can modify the control �ow of the program. Thus, the veri�cation of programs
performing FP computations is a key issue in the development of critical systems.

Methods for verifying programs performing FP computations are mainly de-
rived from standard program veri�cation methods. Bounded model checking
(BMC) techniques have been widely used for �nding bugs in hardware design [3]
and software [11]. SMT solvers are now used in most of the state-of-the-art BMC
tools to directly work on high level formula (see [2, 9, 11]). The bounded model
checker CBMC encodes each FP operation of the program with a set of logic
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functions on bit-vectors which requires thousands of additional variables and be-
comes quickly intractable [6]. Tools based on abstract interpretation [10, 22] can
show the absence of run-time errors (e.g., division by zero) on program working
with FP numbers. Tools based on abstract interpretation are safe since they
over-approximate FP computations. However, over-approximations may be very
large and these tools may generate many false alerts, and thus reject many valid
programs. For instance, Chen's polyhedral abstract domains [7] rely on coarse
approximations of �oating-point operations that do not take advantage of the
rounding mode. Constraint programming (CP) has also been used for program
testing [13, 14] and veri�cation [8]. CP o�ers many bene�ts like the capability to
deduce information from partially instantiated problems or to exhibit counter-
examples. The CP framework is very �exible and simpli�es the integration of
new solvers for handling a speci�c domain, for instance FP solvers. However, it
is important to understand that solvers over real numbers (R) cannot correctly
handle FP arithmetic. Dedicated constraint solvers are required in safe CP-based
framework and BMC-SMT tools for testing or verifying numerical software1.

Techniques to solve FP constraints are based on adaptations of classical con-
sistencies (e.g. box-consistency and 2B-consistency) over R [21], [20, 5]. However
FP solvers based on these techniques do not really scale up to large constraint
systems. That is why we introduce here a new method to handle constraints
over the FP numbers by taking advantage of solvers over R. The basic tenet
is to build correct but tight relaxations over R of the FP operations. To en-
sure the tightness of the result, each FP operation is approximated according to
its rounding mode. For example, assume that x and y are positive normalized
FP numbers2, then the FP product x ⊗ y with a rounding mode set to −∞, is
bounded by α× (x× y) < x⊗ y ≤ x× y where α = 1/(1 + 2−p+1) and p is the
size of the signi�cand. Approximations for special cases have also been re�ned,
e.g., for the addition with a rounding mode set to zero, or for the multiplication
by a constant.

Using these relaxations, a problem over the FP numbers is �rst translated
into a set of nonlinear constraints over R. A linearization of the nonlinear con-
straints is then applied to obtain a mixed integer linear problem (MILP) over
R. In this process, binary variables are used to handle concave domains to pre-
vent too loose over-approximations. This last set of constraints can directly be
solved by available MILP solvers over R which are relieved from the drawbacks
of FP arithmetic. E�cient MILP solvers rely on FP computations and thus,
might miss some solutions. In order to ensure a safe behavior of our algorithm,
correct rounding directions are applied to the relaxation coe�cients [19, 4] and a

1 See FPSE (http://www.irisa.fr/celtique/carlier/fpse.html), a solver for FP con-
straints coming from C programs.

2 A FP number is a triple (s, e,m) where s is the sign, e the exponent and m the
signi�cand. Its value is given by (−1)s × 1.m × 2e. r and p are the size of the
exponent and the signi�cand. The IEEE standard 754 de�nes the single format
with (r, p) = (8, 23) and the double format with (r, p) = (11, 52). A normalized FP
number's signi�cand has no non-zero digits to the left of the decimal point and a
non-zero digit just to the right of the decimal point.



procedure [23] to compute a safe minimizer from the unsafe result of the MILP
solver is also applied. Preliminary experiments are promising and this new �l-
tering technique should really help to scale up all veri�cations tools that uses a
FP solver.

Our method relies on a high level representation of the FP operations and,
thus, does not su�er from the same drawbacks than bit vector encoding. The bit
vector encoding used in CBMC generates thousands of additional binary vari-
ables for each FP operation of the program. For example, an addition of two
32 bits �oats requires 2554 binary variables [6]. The mixed approximations pro-
posed in [6] reduce the number of additional binary variables signi�cantly but
the resulting system remains expensive in memory consumption. For instance,
a single addition with only 5 bits of precision still requires 1035 additional vari-
ables. Our method does also generate additional variables: temporary variables
are used to decompose complex expressions into elementary operations over the
FP numbers and some binary variables are used to handle the di�erent cases of
our relaxations. However, the number of generated variables is negligible com-
pared to the ones required by a bit vector encoding.

1.1 An illustrative example

Before going into the details, let us illustrate our approach on a very simple
example. Consider the simple constraint

z = x⊕ y 	 x (1)

where x, y and z are 32 bits FP variables, and ⊕ and 	 are the addition and the
subtraction over F , respectively. Over the real numbers, such an expression can
be simpli�ed to z = y. However, this is not true with FP numbers. For example,
over F and with a rounding mode set to the nearest, 10.0⊕ 10.0−8	 10.0 is not
equal to 10.0−8 but to 0. This absorption phenomenon illustrates why expressions
over the FP numbers cannot be simpli�ed in the same way than expressions over
the real numbers.

Now, let us assume that x ∈ [0.0, 10.0], y ∈ [0.0, 10.0] and z ∈ [0.0, 10.08].
FP2B, a 2B-consistency [16] algorithm adapted to FP constraints [20], �rst per-
forms forward propagation of the domains of x and y on the domain of z using an
interval arithmetic where interval bounds are computed with a rounding mode
set to the nearest. Backward propagation being of no help here, the �ltering
process yields:

x ∈ [0.0, 10.0], y ∈ [0.0, 10.0], z ∈ [0.0, 20.0]

This poor �ltering is due to the fact that 2B-consistency algorithms cannot han-
dle e�ciently constraints with multiple occurrences of the variables. A stronger
consistency like 3B-consistency [16] will reduce the domain of z to the interval
[0.0, 10.01835250854492188]. However, 3B-consistency will fail to reduce the do-
main of z when x and y occur more than two times, like in z = x⊕ y 	 x	 y ⊕
x⊕ y 	 x.



Algorithm FPLP, introduced in this paper, �rst builds safe nonlinear relax-
ations over R of the constraints over F derived from the program. Of course,
these relaxations are computed according to the rounding mode. Applied to
constraint (1), it yields the following relaxations over R:

(1− 2−p

(1−2−p) )(x+ y) ≤ tmp1
tmp1 ≤ (1 + 2−p

(1+2−p) )(x+ y)

(1− 2−p

(1−2−p) )(tmp1− x) ≤ tmp2
tmp2 ≤ (1 + 2−p

(1+2−p) )(tmp1− x)
z = tmp2

where p is the size of the signi�cand of the FP variables. tmp1 approximates the
result of the operation x ⊕ y by means of two planes over R which encompass
all the results of this addition over F . tmp2 does the same for the subtraction.
Some relaxations, like the one of the product, include nonlinear terms. In such a
case, a linearization process is applied to get a MILP. Once the problem is fully
linear, a MILP solver is used to shrink the domain of each variable, respectively,
minimizing and maximizing it.

FPLP, which stands for Floating-Point Linear Program, implements the algo-
rithm previously sketched. A call to FPLP on constraint (1) immediately yields:

x ∈ [0, 10], y ∈ [0, 10], z ∈ [0, 10.0000023841859]

which is a much tighter result than the one computed by FP2B. Contrary to
3B-consistency, FPLP still gives the same result with FPLP provides the same
result for constraint z = x⊕y	x	y⊕x⊕y	x whereas 3B-consistency cannot
reduce the upper bound of z on the latter constraint.

1.2 Outline of the paper

The rest of this paper is organized as follows: the next section introduces the
nonlinear relaxations over R of the constraints over F . The following section
shows how the nonlinear terms of the relaxations are linearized. Then, the �l-
tering algorithm is detailed and the results of our experiments are given before
concluding the paper.

2 Relaxations of FP constraints

This section introduces nonlinear relaxations over R of the FP constraints from
the initial problem. These relaxations are the cornerstone of the �ltering process
described in this paper. They must be correct, i.e., they must preserve the whole
set of solutions of the initial problem, and tight, i.e., they should enclose the
smallest amount of non FP solutions.

These relaxations are built using two techniques: the relative error and the
correctly rounded operations. The former is a technique frequently used to an-
alyze the precision of the computation. The latter property is ensured by any



IEEE 754 compliant implementation of the FP arithmetic: a correctly rounded
operation is an operation whose result over F is equal to the rounding of the
result of the equivalent operation over R. In other word, let x and y be two FP
numbers, � and ·, respectively, an operation over F and its equivalent over R,
if � is correctly rounded then, x� y = round(x · y).

In the rest of this section, we �rst detail how to build these relaxations for a
speci�c case before de�ning the relaxations in the general cases. Then, we will
show how the di�erent cases can be simpli�ed.

2.1 A speci�c case

In order to explain how these relaxations are built, let us consider the case where
an operation is computed with a rounding mode set to −∞ and the result of this
operation is a positive and normalized FP number. Such an operation, denoted
�, could be any of the four basic binary operations from the FP arithmetic. The
operands are all supposed to have the same FP type, i.e., either �oat, double or
long double. Then, the following property holds:

Proposition 1. Let x and y be two FP numbers whose signi�cand is represented

by p bits. Assume that the rounding mode is set to −∞ and that the result of

x � y is a normalized positive FP numbers smaller than maxf , the biggest FP

number, then the following property holds:

1

1 + 2−p+1
(x · y) < x� y ≤ (x · y)

where � is a basic operation over the FP numbers and, · is the equivalent oper-

ation over the real numbers.

Proof. Since IEEE 754 basic operations are correctly rounded and the rounding
mode is set to −∞, we have:

x� y ≤ x · y < (x� y)+ (2)

(x�y)+, the successor of (x�y) within the set of FP numbers, can be computed
by

(x� y)+ = (x� y) + ulp(x� y)

as, ulp, which stands for unit in the last place, is de�ned by ulp(x) = x+ − x.
Thus, it results from (2) that

x� y ≤ x · y < (x� y) + ulp(x� y)

From the second inequality, we have

1

x� y + ulp(x� y)
<

1

x · y



By multiplying each side of the inequality by x� y � which is a positive number
� we get

x� y
x� y + ulp(x� y)

<
x� y
x · y

By multiplying each side of the above inequality by −1 and by adding one to
each side, we obtain

1− x� y
x · y

< 1− x� y
x� y + ulp(x� y)

=
ulp(x� y)

x� y + ulp(x� y)
(3)

Now, consider ε, the relative error de�ned by

ε =

∣∣∣∣real_value− float_valuereal_value

∣∣∣∣
ε is the absolute value of the di�erence between the result over R and the result
over F divided by the result over R. In the considered case, the result of x� y
being a positive normalized �oating-point number and x · y ≥ x� y, the relative
error is given by

0 ≤ ε = x · y − x� y
x · y

= 1− x� y
x · y

Thus, thanks to (3), we have

0 ≤ ε < ulp(x� y)
x� y + ulp(x� y)

z, the result of the operation x�y, is a binary positive and normalized FP number
that can be written z = 1.mz2

ez , where mz has p bits. Moreover, ulp(z) =
2−p+12ez . Therefore,

0 ≤ ε < 2−p+12ez

mz2ez + 2−p+12ez
=

2−p+1

mz + 2−p+1

The value of the signi�cand of a normalized FP number belongs to the interval
[1.0, 2.0[. An upper bound of the relative error ε is given by the minimum of
mz + 2−p which is reached when mz = 1. Thus

0 ≤ ε < 2−p+1

1 + 2−p+1

Since we have

ε =
x · y − x� y

x · y
we have

0 ≤ x · y − x� y
x · y

<
2−p+1

1 + 2−p+1

and

0 ≤ x · y − x� y < (x · y) 2−p+1

1 + 2−p+1



Rounding Negative Negative Positive Positive

mode normalized denormalized denormalized normalized

to −∞ [(1 + 2−p+1)zr, zr] [zr −minf , zr] [zr −minf , zr] [ 1
(1+2−p+1)

zr, zr]

to +∞ [zr,
1

(1+2−p+1)
zr] [zr, zr +minf ] [zr, zr +minf ] [zr, (1 + 2−p+1)zr]

to 0
[
zr,

1
(1+2−p+1)

zr
]

[zr −minf , zr] [zr, zr +minf ] [ 1
(1+2−p+1)

zr, zr]

to nearest [(1 + 2−p

(1+2−p)
)zr, [zr −

minf

2
, [zr −

minf

2
[(1− 2−p

(1−2−p)
)zr,

(1− 2−p

(1−2−p)
)zr] zr +

minf

2
] zr +

minf

2
] (1 + 2−p

(1+2−p)
)zr]

Table 1. Relaxations of x� y for each rounding mode where zr = x · y.

By multiplying each side of the inequality by −1 and adding x · y to each side,
we �nally obtain

1

1 + 2−p+1
(x · y) < x� y ≤ x · y

�

2.2 Generalization

Table 1 summarizes the relaxations for each rounding mode in the di�erent cases,
i.e., positive or negative FP numbers, as well as, normalized and denormalized
FP numbers. Each case has a dedicated correct and tight approximation built
in a way similar to the one of the case detailed in the previous subsection.

Note that tighter approximations for speci�c cases could also be computed.
For example, the approximation of an addition with a rounding mode sets to
±∞ could be slightly improved. In a similar way, the structure of the problem
is another source of improvements of the approximations. For example, 2 ⊗ x
being exactly computed3, it can directly be evaluated over R.

2.3 Simpli�ed relaxations

The main issue with the previous relaxations is that the solving process will have
to handle the di�erent cases. As a result, for n basic operations, the solver has to
deal with 4n potential combinations of the relaxations. To decrease substantially
this complexity, we provide here a combination of the four cases of each rounding
mode into a single case.

Let us �rst consider the case where the rounding mode is set to −∞:

Proposition 2. Let x and y be two FP numbers whose signi�cand size is p and,

assume that the rounding mode is set to −∞ and, that −maxf < x�y < maxf ,
then,

zr − 2−p+1|zr| −minf ≤ x� y ≤ zr
3 Provided that no over�ow occurs.



where minf is the smallest positive FP number, � and · are respectively a basic

binary operation over F and its equivalent over R, and zr = x · y.

Proof. In a �rst step, the normalized and denormalized approximations are com-
bined. If zr > 0 then 1

1+2−p+1 zr < zr. Thus,

1

1 + 2−p+1
zr −minf < zr −minf

and
1

1 + 2−p+1
zr −minf <

1

1 + 2−p+1
zr

Therefore,
1

1 + 2−p+1
zr −minf < x� y ≤ zr, zr ≥ 0

When zr ≤ 0, we get

(1 + 2−p+1)zr −minf < x� y ≤ zr, zr ≤ 0

These two approximations can be rewritten as follows,{
zr − 2−p+1

1+2−p+1 zr −minf < x� y ≤ zr, zr ≥ 0

zr + 2−p+1zr −minf < x� y ≤ zr, zr ≤ 0

To combine the negative and positive approximations together we can use the
absolute value: {

zr − 2−p+1

1+2−p+1 |zr| −minf < x� y ≤ zr, zr ≥ 0

zr − 2−p+1|zr| −minf < x� y ≤ zr, zr ≤ 0

As max{ 2−p+1

1+2−p+1 , 2
−p+1} = 2−p+1, we get

zr − 2−p+1|zr| −minf ≤ x� y ≤ zr

�

The same reasoning holds for other rounding modes. Table 2 summarizes the
simpli�ed relaxations for each rounding mode. Note that these approximations
de�ne concave sets.

3 Linearization of the relaxations

The relaxations introduced in the previous section contain nonlinear terms that
cannot be directly handled by a MILP solver. In this section, we describe how
these terms are approximated by sets of linear constraints.



Rounding mode The approximation of x� y
to −∞ [zr − 2−p+1|zr| −minf , zr]

to +∞ [zr, zr + 2−p+1|zr|+minf ]

to 0
[zr − 2−p+1|zr| −minf ,

zr + 2−p+1|zr|+minf ]

to the nearest
[zr − 2−p

(1−2−p)
|zr| −

minf

2
,

zr +
2−p

(1−2−p)
|zr|+

minf

2
]

Table 2. Simpli�ed relaxations of x� y for each rounding mode (with zr = x · y).

3.1 Absolute value linearization

Simpli�ed relaxations that allow to handle all numerical FP values with a single
set of two inequalities require absolute values. Absolute values can either be
loosely approximated by three linear inequalities or by a tighter decomposition
based on big M rewriting method:

z = zp − zn
|z| = zp + zn

0 ≤ zp ≤M × b
0 ≤ zn ≤M × (1− b)

where b is a boolean variable, zp and zn are real positive variables and, M is a
FP number such that M ≥ max{|z|, |z|}. The method separates zp, the positive
values of z, from zn, its negative values. When b = 1, z gets its positive values
and we have z = zp = |z|. If b = 0, z gets its negative values and we have
z = −zn and |z| = zn.

If the underlying MILP solver allows indicator constraints, the two last set
of inequalities can be replaced by:{

b = 0→ zp = 0

b = 1→ zn = 0

3.2 Linearization of nonlinear operations

Bilinear terms, square terms, and quotient linearizations are based on standard
techniques used by Sahinidis et al [24]. They have been also used in the Quad
system [15] designed to solve constraints over the real numbers. x×y is linearized
according to Mc Cormick [18]:

Let x ∈ [x, x] and y ∈ [y, y], then
z − xy − yx+ xy ≥ 0

−z + xy + yx− xy ≥ 0

−z + xy + yx− xy ≥ 0

z − xy − yx+ xy ≥ 0



These linearizations have been proved to be optimal by Al-Khayyal and Falk
[1].

Each time x = y, i.e., in case of z = x⊗x, the linearization can be improved.
x2 convex hull is underestimated by all the tangents at x2 curve between x and
x and overestimated by the line that join (x, x2) to (x, x2). A good balance is
obtained with the two tangents at the bounds of x. Thus, x2 linearization yields:

z + x2 − 2xx ≥ 0

z + x2 − 2xx ≥ 0

(x+ x)x− z − xx ≥ 0

z ≥ 0

The division takes advantage of the properties of real arithmetic: the essential
observation is that z = x/y is equivalent to x = z × y. Therefore, Mc Cormick
[18] linearizations can be used here. These linearizations need the bounds of z
which can directly be computed by interval arithmetic:

[z, z] = [∇(min(x/y, x/y, x/y, x/y)),
∆(max(x/y, x/y, x/y, x/y))]

where ∇ and ∆ are respectively the rounding modes towards −∞ and +∞.

4 Filtering algorithm

The proposed �ltering algorithm relies on the linearizations of the relaxations
over R of the initial problem to attempt to shrink the domain of the variables by
means of a MILP solver. Algorithm 1 details the steps of this �ltering process.

First, functionApproximate relaxes initial FP constraints to nonlinear con-
straints over R. Then, function Linearize linearizes the nonlinear terms of these
relaxations to get a MILP.

The �ltering loop starts with a call to FP2B, a �ltering process relying on
an adaptation of 2B-consistency to FP constraints that attempts to reduce the
bounds of the variables. FP2B propagates bound values to intermediate vari-
ables. The cost of this �ltering process is quite light: it stops as soon as do-
main size reduction between two iterations is less than 10%. Thanks to function
UpdateLinearizations, newly computed bounds are used to tighten the MILP.
Note that this function updates variable domains as well as linearization coe�-
cients.

After that, MILP is used to compute a lower bound and an upper bound
of the domain of each variable by means of function safeMin. This function
computes a safe global minimizer of the MILP.

This process is repeated until the percentage of reduction of the domains of
the variables is lower than a given ε.



Algorithm 1 FPLP

1: Function FPLP (V,D, C, ε)
2: % V: FP variables
3: % D: Domains of the variables
4: % C: Constraints over FP numbers
5: % ε: Minimal reduction between two iterations
6: C′ ← Approximate (C);
7: C′′ ← Linearize (C′,D);
8: boxSize←

∑
x∈V

(xD − xD);

9: repeat
10: D′ ← FP2B(V,D, C, ε);
11: if ∅ ∈ D′ then
12: return ∅;
13: end if

14: C′′ ← UpdateLinearizations(C′′,D′);
15: for all x ∈ V do

16: [xD′ , xD′ ]← [safeMin(x, C′′), −safeMin(−x, C′′)];
17: if [xD′ , xD′ ] = ∅ then
18: return ∅;
19: end if

20: end for

21: oldBoxSize← boxSize;
22: boxSize←

∑
x∈V

(xD′ − xD′);

23: D ← D′
24: until boxSize ≥ oldBoxSize ∗ (1− ε);
25: return D;

4.1 Getting a safe minimizer

Using an e�cient MILP solver like CPLEX to �lter the domains of the variables
raises two important issues related to FP computations.

First, linearization coe�cients are computed with FP arithmetic and are sub-
ject to rounding errors. Therefore, to avoid the loss of solutions, special attention
must be paid to the rounding directions. Correct linearizations rely on FP com-
putations done using the right rounding directions. For instance, consider the
linearization of x2 where x ≥ 0 and x ≥ 0:

y +∆(x2)−∆(2x)x ≥ 0

y +∆(x2)−∆(2x)x ≥ 0

∆(x+ x)x− y −∇(xx) ≥ 0

y ≥ 0

This process that ensures that all the linearizations are safe is called within the
Linearize and UpdateLinearizations functions. For more details on how to
compute safe coe�cients see [19, 4].



2B 3B FPLP (without 2B) FPLP

Program n nT nB t(ms) t(ms) %(2B) t(ms) %(2B) t(ms) %(2B)

Absorb1 2 1 1 TO TO - 3 98.91 5 98.91

Absorb2 2 1 1 1 24 0.00 3 100.00 4 100.00

Fluctuat1 3 12 2 4 156 99.00 264 99.00 172 99.00

Fluctuat2 3 10 2 1 4 0.00 29 0.00 21 0.00

MeanValue 4 28 6 3 82 97.45 530 97.46 78 97.46

Cosine 5 33 7 5 153 33.60 104 33.61 43 33.61

SqrtV1 11 140 29 9 27198 99.63 1924 100.00 1187 100.00

SqrtV2 21 80 17 7 TO - 2337 100.00 1321 100.00

SqrtV3 5 46 8 5 573 53.80 185 54.83 82 54.83

Sine taylor 6 44 9 5 452 63.29 313 63.29 227 63.29

Sine iter 16 109 21 8 4503 39.20 5885 39.31 165 39.31

Qurt 6 21 3 4 26 43.56 163 43.56 38 43.56

Poly 6 51 9 5 1569 49.17 765 76.66 309 76.66

Newton 7 69 14 5 1542 45.16 479 45.16 195 45.16
Table 3. Experiments

Second, e�cient MILP solvers use FP arithmetic. Thus, the computed min-
imizer might be wrong. The unsafe MILP solver is made safe thanks to the
correction procedure introduced in [23]. It consists in computing a safe lower
bound of the global minimizer. The safeMin function implements these correc-
tions and return a safe minimizer of the MILP.

5 Experiments

This section compares the results of di�erent �ltering techniques for FP con-
straints with the method introduced in this paper. Experiments have been done
on a laptop with an Intel Duo Core at 2.8Ghz and 4Gb of memory running under
Linux.

Our experiments are based on the following set of benchmarks:

� Absorb 1 detects if, in a simple addition, x absorbs y while Absorb 2 checks
if y absorbs x.

� Fluctuat1 and Fluctuat2 are program pathes that come from a presenta-
tion of the Fluctuat tool in [12].

� MeanValue returns true if an interval contains a mean value and false oth-
erwise.

� Cosine is a program that computes the function cos() with a Taylor formula.
� SqrtV1 computes sqrt in [0.5, 2.5] using a two variable iterative method.
� SqrtV2 computes sqrt with a Taylor formula.



� SqrtV3 computes the square root of (x + 1) using a Taylor formula. This
program comes from CDFPL benchmarks4.

� Sine taylor computes the function sine using a Taylor formula.
� Sine iter computes the function sine with an iterative method and comes
from the SNU real time library5.

� Qurt computes the real and imaginary roots of a quadratic equation and
also comes from the SNU library.

� Poly tries to compare two di�erent writings of a polynomial. This program
is available on Eric Goubault web page6

� Newton computes one or two iterations of a Newton on the polynomial x−
x3/6 + x5/120x7/5040 and comes from CDFPL benchmarks.

Table 3 summarizes experiment results for the following �ltering methods:
FP2B, an adaptation of 2B-consistency to FP constraints that takes advan-
tage of the property described in [17] to avoid some slow convergences, FP3B,
an adaptation of 3B-consistency to FP constraints, FPLP(without FP2B), an
implementation of algorithm 1 without the call to FP2B and, FPLP, an im-
plementation of algorithm 1. First column of table 3 gives program's names,
column 2 gives the number of variables of the initial problem and column 3 gives
the amount of temporary variables used to decompose complex expressions in
elementary operations. Column 4 gives the number of binary variables used by
FPLP. For each �ltering algorithm, table 3 gives the amount of milliseconds re-
quired to �lter the constraints (columns t(ms)). For all �ltering algorithm but
FP2B, table 3 gives also the percentage of reduction compared to the reduction
obtained by FP2B (columns %(FP2B)). The time out (TO) was set to 2 minutes.

The results from table 3 show that FPLP achieves much better domain re-
ductions than 2B-consistency and 3B-consistency �ltering algorithms. FPLP re-
quires more times than FP2B but the latter achieves a very weaker pruning on
theses benchmarks. This is exempli�ed by the two Absorb1 and SqrtV1 benches.
Here, FP2B su�ers from the multiple occurrences of the variables. FPLP also
consistently outperforms FP3B : it almost always provides much smaller domains
and it requires much less time.

A comparison of FPLP with and without a call to FP2B shows that a co-
operation between these two �ltering methods can signi�cantly decrease the
computation time but does not change the �ltering capabilities.

6 Conclusion

In this paper, we have introduced a new �ltering algorithm for handling con-
straints over FP numbers. This algorithm bene�ts from the linearizations of the
relaxations over R of the initial constraints over F to reduce the domains of the
variables with a MILP solver. Experiments show that FPLP drastically improves

4 See http://www.cprover.org/cdfpl/.
5 See http://archi.snu.ac.kr/realtime/
6 See http://www.lix.polytechnique.fr/∼goubault/.



the �ltering process, especially when combined with a FP2B �ltering process.
MILP bene�ts from a more global view of the constraint system than local con-
sistencies, and thus provides an e�ective way to handle multiple occurrences of
variables.

Additional experiments are required to better understand the interactions
between the two algorithms and to improve their performances.
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