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At a glance

Model: Communicating Finite State Machines + Time

Problem: Decidability and complexity of reachability w.r.t. 
the communication topology

Results: Adding time does not change decidability, but the 
complexity worsens



Communicating Finite State Machines
Network of finite automata communicating over unbounded FIFO channels.
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Communicating Finite State Machines

Reachability is in general undecidable [Brand&Zafiropulo].
Decidabile restrictions:

• Bound the channel (→ finite state system).

• Restrict the message alphabet to a singleton (→ Petri nets) [Karp&Miller’69].

• Make the channel lossy [Abdulla&Jonsson’96, Cece&Finkel&Iyer’96].

• Restrict to mutex communication [Heussner&Leroux&Muscholl&Sutre’10].
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Reachability is in general undecidable [Brand&Zafiropulo].
Decidabile restrictions:

• Bound the channel (→ finite state system).

• Restrict the message alphabet to a singleton (→ Petri nets) [Karp&Miller’69].

• Make the channel lossy [Abdulla&Jonsson’96, Cece&Finkel&Iyer’96].

• Restrict to mutex communication [Heussner&Leroux&Muscholl&Sutre’10].

• Restrict the communication topology [La Torre&Madhusudan&Parlato’08].
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Communicating Finite State Machines
Decidability for restricted topologies.

Theorem [La Torre&Madhusudan&Parlato’08].
Reachability for CFSMs is decidable iff the topology is a polyforest.

Theorem [La Torre&Madhusudan&Parlato’08].
Reachability is PSPACE-complete on polyforest topologies.

Our aim: Extend this results to models with time.

Examples of polyforest: Non-example:
P

Q
RP Q R

(no undirected cycle)

P Q
R

S



Communicating FSMs + Time

Discrete time Dense time

• Each process is a tick automaton 
[Gruber&Holzer&Kiehn&Koenig]

• Add a synchronising action τ

• All processes perform τ at the 
same time

• Each process is a timed 
automaton [Alur&Dill’94]

• Clocks are local to each process

• All clocks evolve at the same rate
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Dense time
• Each process is a timed 

automaton with local clocks • All clocks evolve at the same rate

0<x<1,!a,{x}P x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b



Dense time

0<x<1,!a,{x}P

• Each process is a timed 
automaton with local clocks • All clocks evolve at the same rate

x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b

ε

x=0

y=0



Dense time

0<x<1,!a,{x}P

• Each process is a timed 
automaton with local clocks • All clocks evolve at the same rate

x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b

ε

x=0.5

y=0.5

Elapse 0.5



Dense time

0<x<1,!a,{x}P

• Each process is a timed 
automaton with local clocks • All clocks evolve at the same rate

x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b

a

x=0

y=0.5

Elapse 0.5



Dense time

0<x<1,!a,{x}P

• Each process is a timed 
automaton with local clocks • All clocks evolve at the same rate

x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b

a

x=0.2

y=0.7

Elapse 0.5+0.2



Dense time

0<x<1,!a,{x}P

• Each process is a timed 
automaton with local clocks • All clocks evolve at the same rate

x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b

x=0.2

y=0

Elapse 0.5+0.2 ε



Dense time

0<x<1,!a,{x}P

• Each process is a timed 
automaton with local clocks • All clocks evolve at the same rate

x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b

Elapse 0.5+0.2+0.8 ε

y=0.8

x=1



Dense time

0<x<1,!a,{x}P

• Each process is a timed 
automaton with local clocks • All clocks evolve at the same rate

x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b

Elapse 0.5+0.2+0.8 b

y=0.8

x=1



Dense time

0<x<1,!a,{x}P

• Each process is a timed 
automaton with local clocks • All clocks evolve at the same rate

x=1,!b

0<y<1,?a,{y}Q 0<y<1,?b

Elapse 0.5+0.2+0.8

y=0.8

x=1

ε



Communicating FSMs + Time

Discrete time Dense time

• Each process is a tick automaton 
[Gruber&Holzer&Kiehn&Koenig]

• Add a synchronising action τ

• All processes perform τ at the 
same time

• Each process is a timed 
automaton [Alur&Dill’94]

• Clocks are local to each process

• All clocks evolve at the same rate

We study discrete 
time first

and then extend 
to dense time
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Theorem: Reachability decidable iff polyforest topology

Theorem: The complexity is the same as Petri nets

(polyforest topologies)

(with a fixed polyforest topology)
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The construction can be adapted to 
work for any given star topology
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Pd1

Pdn

given counters
c_1...c_m and
d_1...d_n

Pc1

Pcm

... ...



Discrete time (summary)

Network of 
Communicating 
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Theorem: Reachability decidable iff polyforest topology

Theorem: The complexity is the same as Petri nets

(polyforest topologies)

(for any fixed star topology)
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Network of 
Communicating 
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Network of 
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Network of 
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Dense time 

In order to preserve the topology, we would like to apply the region 
construction locally to each automaton. But this is incorrect.

P

Q

RS

P’’

Q’’

R’’S’’



Network of 
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Network of 
Communicating 
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Dense time 
Network of 

Instrumented 
Timed Automata

Instrumented automaton: just a 
timed automaton with tick actions

instrumentation

region construction

.
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instrumentation region construction
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Network of 
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Timed Automata

instrumentation

region construction

.

Intuition for instrumentation:
add ticks to mark the beginning and end of integer time points

timed run instrumented run

...
0 1 2

a0 a1 a2 ...
...

0 1 2

a0 a1 a2 ...τ τ τ τ τ

This can be achieved by a simple construction on each timed automaton
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Dense time 
Network of 

Instrumented 
Timed Automata

instrumentation

region construction

.

Realising instrumentation:
add a new clock t

x>0,!a,{x}P

t=0&x>0,!a,{x}P,0

0<t<1&x>0,!a,{x}P,1

t=0,τ

t=1,τ,{t}

t=0,τ

t=1,τ,{t}
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instrumentation

region construction

.

P

Q

RS

P’’

Q’’

R’’S’’

P’

Q’

R’S’

instrumentation region construction

has an 
accepting run

has an 
accepting run

has an 
accepting runiff only if

The other direction follows from a 
Rescheduling Lemma for timed automata



Dense time 
P’’

Q’’

R’’S’’

P’

Q’

R’S’

region construction

has an 
accepting run

has an 
accepting runif

• An accepting run on the left 
induces a local accepting run in 
each P’’, Q’’, etc...

• Instrumentation guarantees that 
integral timestamps agree.

• What about non-integral ones?
Instrumentation just ensures 
that they are in the same 
interval (k, k+1)

...
0 1 2

a0 a1 a2 ...τ τ τ τ τ

Need to preserve send/receive 
causality ordering!

A Rescheduling Lemma ensures that 
on polyforest topologies timestamps 
can be chosen to preserve causality
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Network of 
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(any topology)

Network of 
Communicating 
Tick Automata

un-timing (exponential blow-up)



Network of 
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Network of 
Communicating 
Tick Automata

Dense time 

Simulate ticks locally by interpreting τ as one time unit

τP !a t=1, {t}P’ t=0,!a

(any topology)



Dense time (summary) 

Network of 
Communicating 
Timed Automata

Theorem: Reachability decidable iff polyforest topology

Theorem: The complexity is Petri net-hard and in Exp-Petri net

(polyforest topologies)

(any topology)

Network of 
Communicating 
Tick Automata

un-timing (exponential blow-up)



Extension: Urgency
Not shown in this presentation: Urgent channels

• Urgency: receptions have priority over internal actions.

• We show that urgent channel are equivalent to zero tests on counters.

Theorem (Discrete time): Rechability decidable iff at most 1 urgent channel for 
each weakly connected component.

• [Krcal&Yi’06]: Reachability is undecidable in the urgent pipeline of length 2.

Extension (Dense time): Reachabiliy undecidable if any weakly connected 
component contains at least 2 urgent channels.

P Q R



Future directions

• Our generic topology-preserving transformation dense --> discrete time 
does not work in the presence of urgency.

• Obtain a complete characterisation in the presence of urgency also for 
dense time.

• Study richer models where timestamps can be sent along the channel.


